Lesson 12: Determinants of Matrices of Order 2 and 3
Lesson Objective
Dear learner,
by the end of this lesson, you will be able to:
- Determine the determinant of a square matrix of order 2
- Find the minor and cofactor of a given element of a matrix
- Calculate the determinant of a square matrix of order 3
Key Terms
- Minor
- Cofactor
- Determinant
Brainstorming Activity
Dear learner, how was the previous lesson! I think it was nice now consider $A = \begin{pmatrix}a & b \\c & d \end{pmatrix}$ be a 2 X 2 matrix then observe what happens when you delete
i. First row and first column
ii. First row and second column
iii. Second row and first column
iv. Second row and second column
Solution:
i. deleting first row and column leads obtaining entry “d” which is determined to be minor of $a_{1,1}$
ii. deleting first row and second column leads obtaining entry “c” which is determined to be minor of $a_{12}$
iii. deleting second row and first column leads obtaining entry “b” which is determined to be minor of $a_{21}$
iv. deleting second row and second column leads obtaining entry “a” which is determined to be minor of $a_{22}$
1.1. Determinant of Asquare matrix
Definition : Let A be square matrix with order n. then determinant of A is a scalar value of a function of entries of A. The determinant of A is denoted by: $det(A)$ or $|A| \in \mathbb{R}$
Example 1:
1.Let A =$\begin{pmatrix}a&b&c&\\e&f&g\\p&q&r\end{pmatrix}_{3\times 3}$, then determinant of A = det(A) =$\begin{vmatrix}a&b&c&\\e&f&g\\p&q&r\end{vmatrix}$.
i. Determinants of Matrices with Order 2
Definition:
Let $A = \begin{pmatrix}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{pmatrix}$ be as quare matrix of order2 or (a 2 X 2 matrix),then determinant of A is defined as: $det(A) = |A| = a_{11} a_{22} – a_{12}a_{21}$
Example 2:
- lLet A = $\begin{pmatrix}4&5\\7&2\end{pmatrix}$, then find
a). det(A)
b). det(2A)
2.Let A = $\begin{pmatrix}x&3+x\\1&2x\end{pmatrix}$ and |A| = 3, then find x?
Solution:
1a). det(A) = $\begin{vmatrix}4&5\\7&2\end{vmatrix}$ =$(4\times2) – (5\times 7)$ = 8 – 35 = -27
b). det(2A) = det(2$\begin{pmatrix}4&5\\7&2\end{pmatrix})$ =$\begin{vmatrix}2\times 4&2\times5\\2\times7&2\times2\end{vmatrix}$ = $8\times4 – 10\times14$ = -108
2.det(A) = 3 = $\begin{vmatrix}x&3+x\\1&2x\end{vmatrix}$
$\implies$ $2x^{2} – x – 3 = 3$
$\implies$ $2x^{2} – x – 6 = 0$ if and only if $2x(x -2) +3(x -2) = 0$
$\implies$ $(2x+3)(x -2) = 0$
$\implies$ $x = -\frac{3}{2}$ or $x = 2$.
1.2. Minors and Cofactors of Elements of Matrices
Definition: Let $A = (a_{ij})_{n}$ be a matrix , where $n \in \mathbb{Z^+}$ and M be the sub matrix obtained by deleating $i^{th}$rows and $j^{th}$ column of A.

then: i. The minor of A at (i,j) is $M_{ij}(A)$ is the determinant of sub matrix $A_{ij}$. i.e. $M_{ij} = det(A_{ij})$
ii the cofactor $C_{ij}(A)$ is the signed determinant of the sub matrix $A_{ij}$. i.e $C_{ij} = (-1)^{i+j}M_{ij}$.
The cofactor $C_{ij}(A)$ at location (i,j) can be computed as:
$C_{ij}(A) = \begin{cases} det(M_{ij} & \text{if } i + j = even \\ -det(M_{ij} & \text{if } i + j = odd\end{cases}$
Example 3:
1.Let A = $\begin{pmatrix}1&2&3\\5&2&1\\0&3&2\end{pmatrix}$ then find the minors and cofactors of A?
Solution:

NOTE:
The sign $(-1)^{i+j}$ on the cofactor of a matrix is a pattern with +’s on the main diagonal.
$\begin{pmatrix}+&-&+\\ -&+&-\\+&-&+\end{pmatrix}$
1.3. Determinant of A Matrix with Order 3
Definition:
Let A = $\begin{pmatrix}a_{11}&a_{12}&a_{13}\\a_{21}&a_{22}&a_{23}\\a_{31}&a_{32}&a_{33}\end{pmatrix}$ be a $3\times3$ matrix, then:
det(A) =$\begin{vmatrix}a_{11}&a_{12}&a_{13}\\a_{21}&a_{22}&a_{23}\\a_{31}&a_{32}&a_{33}\end{vmatrix}$ such that
det(A) =$a_{11}C_[{11} + a_{12}C_{12} +a_{13}C_{13}$ ………… first row expansion
det(A) = $a_{21}C_{21} + a_{22}C_{22} +a_{23}C_{23}$ ……… second row expansion
det(A) = $a_{31}C_{31} + a_{32}C_{32} +a_{33}C_{33}$ …….. third row expansion and it is said to be the cofactor expansion.
Example 4:
1.Find the determinant of the following matrices
a). A = $\begin{pmatrix}1&2&3\\3&1&0\\2&3&5\end{pmatrix}$
b). B = $\begin{pmatrix}2&3&0\\1&1&2\\0&2&0\end{pmatrix}$
Solution:
a). det(A) =$\begin{vmatrix}1&2&3\\3&1&0\\2&3&5\end{vmatrix}$ = $1\times \begin{vmatrix}1&0\\3&5\end{vmatrix} +(-2)\begin{vmatrix}3&0\\2&5\end{vmatrix} + 3\begin{vmatrix}3&1\\2&3\end{vmatrix}$ = (5 – 0) +(-2)(15 – 0) + 3(9 – 2) = 5 – 30 + 21 = -13.
det(A) = -13
b). det(B) =$\begin{vmatrix}2&3&0\\1&1&2\\0&2&0\end{vmatrix}$ = $2\times \begin{vmatrix}1&2\\2&0\end{vmatrix} +(-3)\begin{vmatrix}1&2\\0&0\end{vmatrix} + 0\begin{vmatrix}1&1\\0&0\end{vmatrix}$ = 2(0 – 4) -3(0) + 0(2 – 0) = -8 – 0 + 0 = -8.
Note:
Determinant of an $n\times n$ matrix$A =(a_{ij})_{n\times n}$ is a real number obtained by:
$det(A) = a_{i1}C_{i1} +a_{i2}C_{i2} + … +a_{in}C_{in}$ …….. $i^{th}$ row expansion
$det(A) = \sum_{j=1}^{n}a_{kj}C_{kj}$, k = 1, 2, 3, …, n. ……….. $k^{th}$ row expansion