Lesson 3: Functions

Definition:

- Let A and B be nonempty sets. A *function* from A to B is a rule that assigns to *every element* of A a *unique* element in B. We call A the *domain*, and B the *codomain*, of the function. If the function is called f, we write $f:A \rightarrow B$. Given $x \in A$, its associated element in B is called its *image* under f. In other words, a function is a relation from A to B with the condition that for every element in the domain, there exists a unique image in the codomain (this is really two conditions: existence of an image and uniqueness of an image). We denote it f(x), which is pronounced as "f of x."
- A function is a special type of relation

The reason why we say a function is special relation, because all of its first components cannot be mapped more than once.

Example:

- 1. Identify whether the following relations are functions or not?
 - a. $A = \{(1,2), (3,4), (5,4), (9,3)\}$
 - b. $B = \{(0,3),(1,4),(2,5),(6,7),(0,8)\}$
 - c. $R = \{(x, y): x \text{ is the age of } y\}$
 - d. $R = \{(x, y): x \text{ is the circumfrence of circle } y\}$

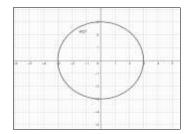
Solution:

- a. A is a function since no first entry of A is mapped more than once
- b. B is not a function, since 0 is mapped more than once.
- c. R is not a function since there may have two or more y's with the same age.
- d. R is a function since circumference of a circle is unique.

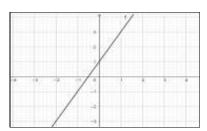
Vertical line test

A relation R is a function if and only if any vertical line intersects graph of R only once.

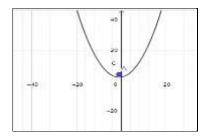
Examples: 1. Identify the following are function graphs or not?



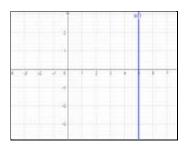
Not function



function



Function



not function

2. Which of the following relations are functions?

a.
$$R_1 = \{(x, y): x, y \in R \text{ and } y = x^2 - 3\}$$

b. $R_2 = \{(x, y): x, y \in Z \text{ and } y \le x + 4\}$
c. $R_3 = \{(x, y): x, y \in Q \text{ and } y = \sqrt{2 - x^2}\}$

b.
$$R_2 = \{(x, y): x, y \in Z \text{ and } y \le x + 4\}$$

c.
$$R_3 = \{(x, y) : x, y \in 0 \text{ and } y = \sqrt{2 - x^2} \}$$

Solution:

- a. R_1 is a function, since it is an up ward paarabola
- b. R_2 is not a function, since it is a region.
- c. R_3 is not a function, since it is a circle.

Note:

- > Every function is a relation but every relation is not a function.
 - > Every relation involving inequalities is not a function.

Types of functions 1.3.1.

- Power function
- ii. Absolute value function
- iii. Signnum function
- Greatest integer (floor) function iv.

Power function

Definition: a function which can be written in the form of $f(x) = ax^r$, where $a, r \in R$

Some examples of power functions:

a.
$$f(x) = 3x^2$$

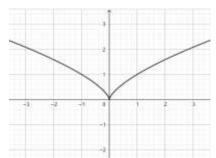
b.
$$f(x) = x^{3.5}$$

$$c. g(x) = x^{\sqrt{2}}$$

Note: $y = f(x) = ax^r$ has variable base and fixed exponent.

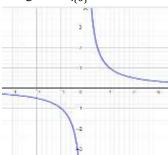
Graphs of some power functions:

1. A.
$$y = x^{\frac{m}{n}}$$
, $m = \text{even and } n = \text{odd}$, $(m < n)$ b. $y = x^{\frac{m}{n}}$, where $m = \text{odd and } n = \text{even}$, $Domain = [0, \infty)$ Range = $[0, \infty)$



2. A.
$$y = x^{-\frac{1}{n}}$$
, $n = \text{odd}$
Domain = $\mathbb{R} \setminus \{0\}$

Range = $\mathbb{R} \setminus \{0\}$



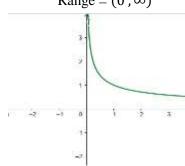
$$g(x) = x^{\frac{1}{2}}$$

$$f(x) = x^{\frac{3}{2}}$$

$$-2 \quad -1 \quad 0 \quad 1 \quad 2 \quad 3 \quad 4$$

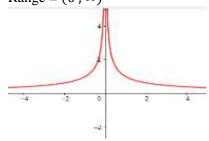
b.
$$y = x^{-\frac{1}{n}}$$
, $n = \text{even}$
Domain = $(0, \infty)$

Range =
$$(0, \infty)$$



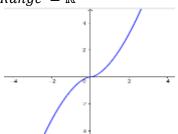
3. A.
$$y = x^{\frac{-m}{n}}$$
, $m = \text{even and } n = \text{odd}$
Domain = $\mathbb{R} \setminus \{0\}$

Range = $(0, \infty)$



b.
$$y = x^{\frac{m}{n}}$$
, m = odd and n=odd (m > n)
Domain = \mathbb{R}

 $Range = \mathbb{R}$



Examples:

1. Find the domain of each of the following power functions

a.
$$f(x) = x^{1/3}$$

$$h f(x) - x^{5/4}$$

b.
$$f(x) = x^{5/4}$$
 c. $f(x) = 5x^{-2/3}$ d. $f(x) = x^{-7/4}$

$$d f(x) = x^{-7/4}$$

- 2. If $f(x) = ax^n$, $a \ne 0$, and f(xy) = f(x)f(y), then what is the value of a?
- 3. Show that $f(x) = 2x^n$ satisfies the property f(xy) = f(x)f(y)?

Solution:

1. a.
$$f(x) = x^{1/3}$$

Domain = \mathbb{R}
2. $f(x) = ax^n$
 $.a(xy)^n = ax^n ay^n$
 $.ax^ny^n = a^2x^ny^n$
 $.\frac{a^2}{a} = 1 \Rightarrow a = 1$

b.
$$f(x) = x^{5/4}$$
 c. $f(x) = 5x^{-2/3}$ d. $f(x) = x^{-7/4}$ domain = $[0, \infty)$ domain = $\mathbb{R} \setminus \{0\}$ domain = $(0, \infty)$

3.
$$f(x) = 2x^n$$

$$. 2(xy)^n = 2x^n x 2y^n$$

$$.2x^n y^n = 4x^n y^n$$

$$. \Rightarrow 2 \neq 4$$

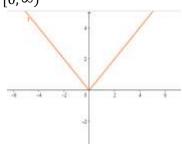
ii. Modulus (Absolute value) Function

Definition:

A real function $f: R \to R$ defined by $f(x) = |x| = \begin{cases} x, & \text{if } x > 0 \\ 0, & \text{if } x = 0 \\ -x, & \text{if } x < 0 \end{cases}$, for every $x \in R$ is the modulus function.

$$\bullet$$
 Domain $f = R$

$$Arr Range f = [0, \infty)$$



Example:

1. Find domain and range of the following

a. f(x) = |x + 1| b. $g(x) = \frac{1}{|x|}$ c. h(x) = 1 - |x - 2| d. $f(x) = \frac{1}{\sqrt{x + |x|}}$ 2. Let x = -2 and y = 6, then find:

a. $|2x + \frac{y}{6}|$ b. |xy + 1| c. $|x^2y|$ d. $|\frac{x}{y}|$

$$a. \quad f(x) = |x+1|$$

b.
$$g(x) = \frac{1}{|x|}$$

c.
$$h(x) = 1 - |x - 2|$$

$$d.f(x) = \frac{1}{\sqrt{x+|x|}}$$

a.
$$\left|2x + \frac{y}{6}\right|$$

b.
$$|xy + 1|$$

c.
$$|x^2y|$$

d.
$$\left| \frac{x}{y} \right|$$

Solution:

1

a.
$$f(x) = |x+1| = \begin{cases} x+1, if x > -1 \\ 0, if x = -1 \\ -x-1, if x < -1 \end{cases}$$
 b. $g(x) = \frac{1}{|x|} = \begin{cases} \frac{1}{x}, if x > 0 \\ \frac{\pi}{x}, if x = 0 \\ -\frac{1}{x}, if x < 0 \end{cases}$
Domain = $\mathbb{R} \setminus \{0\}$

b.
$$g(x) = \frac{1}{|x|} = \begin{cases} \frac{1}{x}, & \text{if } x > 0 \\ \nexists, & \text{if } x = 0 \\ -\frac{1}{x}, & \text{if } x < 0 \end{cases}$$

Domain
$$= \mathbb{R} \setminus_{\{0\}}$$

Range =
$$[-1, \infty)$$

Range =
$$\mathbb{R}\setminus_{\{0\}}$$

$$c. h(x) = 1 - |x - 2| = \begin{cases} 1 - x + 2 = 3 - x, & \text{if } x > 2 \\ 1 - 0 = 1, & \text{if } x = 2 \\ 1 - (-x + 2) = x - 1, & \text{if } x < 2 \end{cases}$$

$$d. f(x) = \frac{1}{\sqrt{x + |x|}} = \begin{cases} \frac{1}{\sqrt{2x}}, & \text{if } x > 0 \\ \frac{1}{2}, & \text{if } x \leq 0 \end{cases}$$

$$d. f(x) = \frac{1}{\sqrt{x+|x|}} = \begin{cases} \frac{1}{\sqrt{2x}}, & \text{if } x > 0 \\ \nexists & \text{if } x \le 0 \end{cases}$$

Domain = R

Domain =
$$(0, \infty)$$

$$Range = R$$

Range =
$$(0, \infty)$$

2.
$$x = -2$$
 and $y = 6$

a.
$$\left|2x + \frac{y}{6}\right| = \left|2(-2) + \frac{6}{6}\right| = 3$$
 b. $|xy + 1| = |-2(6) + 1| = 11$ c. $|x^2y| = |(-2)^2(6)| = 24$

d.
$$\left| \frac{x}{y} \right| = \left| -\frac{2}{6} \right| = \frac{1}{3}$$

Properties:

For any real numbers x and y:
$$i. |x| = |-x|$$
 ii. $|xy| = |x||y|$ iii. $\left|\frac{x}{y}\right| = \frac{|x|}{|y|} \ y \neq 0$, iv. $x \leq |x|$ v. $|x+y| \leq |x| + |y|$ (triangular inequality)

Examples:

1. Find the solution set for the following equations

a.
$$|x| = 8$$
 b. $|-5x + 7| = 2$ c. $|3x - 5| + 6 = 4$ d. $|3x + 5| + |2 - x| = 9$

2. Sketch the graph of the following functions

a.
$$f(x) = |x| - x$$
 b. $f(x) = 3 - |x|$ c. $f(x) = |\sqrt{x}|$ d. $f(x) = \ln|x|$

Solution

1.
$$a. |x| = 8:$$
 $case 1: if x > 0$ $case 2: if x < 0$ $then x = 8$ $then - x = 8 \Rightarrow x = -8$ $then - x = 8 \Rightarrow x = -8$

$$b. |-5x + 7| = 2$$

$$case 1: if -5x + 7 \ge 0$$

$$x \le \frac{7}{5}$$

$$-5x + 7 = 2$$

$$-5x = 2 - 7$$

$$-5x = -5$$

$$x = 1$$

$$case 2: -5x + 7 < 0$$

$$x > \frac{7}{5}$$

$$-(-5x + 7) = 2 \implies 5x - 7 = 2$$

$$5x = 2 + 7$$

$$5x = 9$$

$$x = 1$$

$$x = 9/5$$

$$\therefore s. s = \{1, 9/5\}$$

$$c. |3x - 5| + 6 = 4$$

Solution: it has no solution since, |3x - 5| = 4 - 6 = -2 if and only if $|x| \ge 0$

$$d.|3x + 5| + |2 - x| = 9$$

Solution

Case 1:
$$3x + 5 \ge 0$$
 and $2 - x \ge 0$ case 2: $3x + 5 \ge 0$ and $2 - x < 0$ case 3: $3x + 5 < 0$ and $2 - x \ge 0$ $x \ge -\frac{5}{3} \cap x \le 2$ $x \ge -\frac{5}{3} \cap x \ge 2$ $x < -\frac{5}{3} \cap x \le 2$ x

$$x < -\frac{5}{3} \cap x \le 2$$

$$x < -\frac{5}{3}$$

$$-(3x+5)+2-x=9$$

$$-3x-5+2-x=9$$

$$-4x-3=9$$

$$-4x=9+3$$

$$-4x=12$$

$$x=-3$$

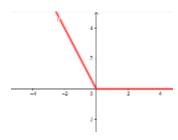
Case4:
$$3x + 5 < 0$$
 and $2 - x < 0$
 $x < -\frac{5}{3} \cap x > 2$
 $s. s. = \emptyset$

$$: s. s = \{-3, 1\}$$

1.
$$a. f(x) = x - |x| =$$

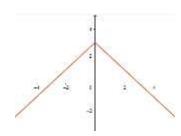
$$\begin{cases} x - x = 0, & \text{if } x \ge 0 \\ -x - x = -2x, & \text{if } x < 0 \end{cases}$$

NB. The graph lies on the x- axis for $x \ge 0$ and a straight line l: y = -2x for x < 0

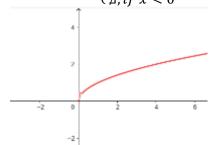


 $x = -8 \notin \{x: x > 2\}$

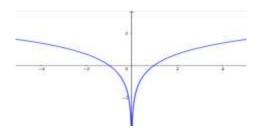
b.
$$f(x) = 3 - |x| = \begin{cases} 3 - x, & \text{if } x \ge 0 \\ 3 + x, & \text{if } x < 0 \end{cases}$$
 c. $f(x) = |\sqrt{x}| = \begin{cases} \sqrt{x}, & \text{if } x \ge 0 \\ \nexists, & \text{if } x < 0 \end{cases}$



c.
$$f(x) = |\sqrt{x}| = \begin{cases} \sqrt{x}, & \text{if } x \ge 0 \\ \nexists, & \text{if } x < 0 \end{cases}$$



c.
$$f(x) = \ln|x| = \begin{cases} \ln x, & \text{if } x \neq 0 \\ \not\exists, & \text{if } x = 0 \end{cases}$$



Absolutes Value Involving Inequalities

Take it as a snap:

$$\triangleright$$
 $|x| \le a \Leftrightarrow -a \le x \le a$

$$|x| \ge a \Leftrightarrow x \le -a \text{ or } x \ge a$$

Example:

1. Solve the following inequalities

$$|x| < 3$$
 $|x| < 3$ $|x| < 3$ $|x| < 3$

b.
$$|2x + 1| > 4$$
 c. $|2x - 3| + 5 \le x - 2$ d. $\left| \frac{2}{x} + 5 \right| \ge \frac{2}{3}$

d.
$$\left| \frac{2}{x} + 5 \right| \ge \frac{2}{3}$$

Solution:

a.
$$|x| < 3$$

Case1: x < 3 and case 2: $-x < 3 \Rightarrow x > -3$

Take union of them

$${x: x < 3} \cup {x: x > -3}$$

Therefore, $|x| < 3 \Leftrightarrow -3 < x < 3$

$$c.|2x-3|+5 \le x-2$$

Re-write as
$$|2x-3| \le x-7$$

Case 1:2
$$x - 3 \le x - 7$$
 case 2:-(2 $x - 3$) $\le x - 7$

$$2x - x \le -7 + 3$$
 $-2x + 3 \le x - 7$
 $x \le -4$ $-2x - x \le -7 - 3$
 $-3x \le -10$

$$x \ge \frac{10}{3}$$

$$\therefore |2x - 3| + 5 \le x - 2 \Leftrightarrow x \le -4 \text{ or } x \ge \frac{10}{3}$$

b.
$$|2x + 1| > 4$$

case
$$1 2x + 1 > 4$$
 case 2: $2x + 1 < -4$

$$2x > 4 - 1$$
 $2x < -4 - 1$

$$2x < -5$$

$$x > \frac{3}{2}$$

$$x < -\frac{5}{2}$$

$$2x > 3$$

$$2x < -5$$

$$x > \frac{3}{2}$$

$$x < -\frac{5}{2}$$

$$|2x + 1| > 4 \Leftrightarrow x < -\frac{5}{2} \text{ or } x > \frac{3}{2}$$

$$d. \left| \frac{2}{x} + 5 \right| \ge \frac{2}{3}$$

$$case1: \frac{1}{x} + 5 \ge \frac{2}{3}$$
 $case2: \frac{2}{x} + 5 \le -\frac{2}{3}$

$$\frac{2}{x} \ge \frac{2}{3} - 5$$
 $\frac{2}{x} \le -\frac{2}{3} - 5$

$$\frac{2}{x} \ge -\frac{13}{3} \qquad \frac{2}{x} \le -\frac{17}{3}$$
$$x \ge -\frac{6}{13} \qquad x \le -\frac{6}{17}$$

$$\therefore \left| \frac{2}{x} + 5 \right| \ge \frac{2}{3} \Leftrightarrow x \le -\frac{6}{17} \text{ or } x \ge -\frac{6}{13}$$

iii. Signum Function

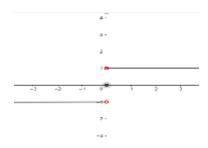
Definition:

The real function
$$f: R \to R$$
, defined by $f(x) = sgnx = \begin{cases} 1, & \text{if } x > 0 \\ 0, & \text{if } x = 0 \\ -1, & \text{if } x < 0 \end{cases}$ is the signum function.

Domain f = R and Range $f = \{1, 0, 1\}$

For ant real number
$$x$$
, $\frac{|x|}{x} = \begin{cases} \frac{x}{x} = 1 \text{ for } x > 0 \\ \nexists \text{ for } x = 0 \end{cases}$ implies $sgnx = \begin{cases} \frac{|x|}{x} \text{ if } x \neq 0 \\ 0 \text{ if } x = 0 \end{cases}$

Graph of sgnx



Examples:

- 1. Evaluate the following functions
 - a. sgn(-3.45) b. $6sgn \pi$ c. sgn(0.000125485)
- c. sgn(0.000125485) d. sign(e) e. $sgn(\frac{5}{2})$
- 2. Fin the solution set of the following functions
 - a. sgn(x+5) = -1 b. 3 sgn(2x+1) = 2 c. 2sgn(3-7x) + 5 = 5
- 3. Sketch the graph, and determine domain and range for the following functions
 - a. $f(x) = x^2 sgnx$ b. f(x) = xsgnx c. f(x) = x sgnx d. |sgnx|

solution:

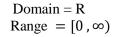
1a.
$$sgn(-3.45) = 1$$
, since $-3.45 < 0$ b. $6sgn \pi = 6(ssgn 3.14) = 6 * 1 = 6$ c. $sgn(0.000125485) = 1$, since $0.00012585 > 0$ d. $sign(e) = 1$, since $e = 2.718282 > 0$ e. $sgn\left(\frac{5}{2}\right) = 1$, since $\frac{5}{2} = 2.5 > 0$

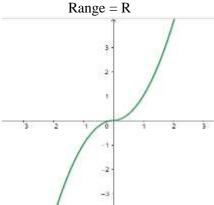
2. a.
$$sgn(x + 5) = -1$$
 b. $3 - sgn(2x + 1) = 2$ c. $2sgn(3 - 7x) + 5 = 5$ $x + 5 < 0$ $-sgn(2x + 1) = 2 - 3$ $2sgn(3 - 7x) = 5 - 5$ $x < -5$ $-sgn(2x + 1) = -1$ $2sgn(3 - 7x) = 0$ $3 - 7x = 0$ $3 - 7x = 0$ $7x = 3$ $2x > -1$ $x = \frac{3}{7}$ $x > -\frac{1}{2}$ $s. s = \{x: x > -\frac{1}{2}\}$

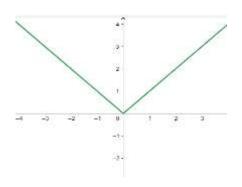
3.a.
$$f(x) = x^2 sgnx = \begin{cases} x^2, & \text{if } x > 0\\ 0, & \text{if } x = 0\\ -x^2, & \text{if } x < 0 \end{cases}$$

b.
$$f(x) = xsgnx = \begin{cases} x, if \ x > 0 \\ 0, if \ x = 0 \\ -x, if \ x < 0 \end{cases} = |x|$$

Domain =
$$R$$







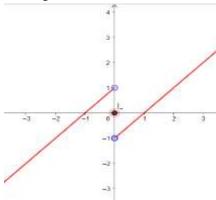
C.
$$f(x) = x - sgnx = \begin{cases} x - 1, if x > 0 \\ 0, if x = 0 \\ 1 - x, if x < 0 \end{cases}$$

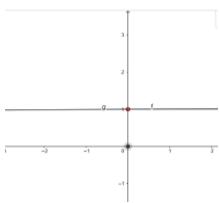
d.
$$|sgnx| = \begin{cases} 1, & \text{if } x \neq 0 \\ 0, & \text{if } x = 0 \end{cases}$$

Domain = R

$$Domain = R$$

$$Range = R$$





iv. Greatest Integer Function (Floor or Step Function)

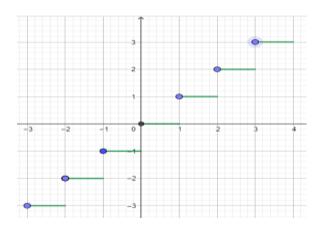
Definition:

The real function $f: R \to R$, defined by $f(x) = \lfloor x \rfloor$, $x \in R$ assumes the value of the greatest integer less than or equal to x is called the **greatest integer function**.

Domain f = R and Range $f = \mathbb{Z}$

Graph of f(x) = |x|

X	[-3,-2)	[-2,-1)	[-1,0)	[0,1)	[1,2)	[2,3)	[3,4)	[4,5)
$f(x) = \lfloor x \rfloor$	-3	-2	-1	0	1	2	3	4



Examples:

d. [50] e. $[\pi]$ f. $[-\sqrt{3}]$ g. $\left|\frac{19}{20}\right|$ a. [-1.002] b. [3.145] c. [0] 1. Evaluate **Solution:**

- a. Greatest integer less than or equal to -1.002 is -2.
- b. Greatest integer less than or equal to 3.145 is 3
- c. Greatest integer less than or equal to 0 is 0
- d. Greatest integer less than or equal to 50 is 50.
- e. Greatest integer less than or equal to $\pi = 3.14214 \dots is 3$
- f. $-2 < -\sqrt{3} < -1$, the greatest integer less than or equal to $-\sqrt{3}$ is -2. g. $\frac{19}{20} = 0.95$, then the greatest integer less than or equal to 0.95 is 0.

NB
$$[x] = \begin{cases} x, & \text{if } x = \mathbb{Z} \\ \mathbb{Z} \le x, & \text{if } x \ne \mathbb{Z} \end{cases}$$

Floor Functions Involving Equations

Note: To solve equations involving floor function we can use the description:

$$[x] = a \Leftrightarrow a \leq x < a + 1$$
, where $a \in \mathbb{Z}$ and $x \in R$

Examples:

1. Solve the following

a.
$$|x| = -5$$
 b. $|2x + 3| = 9$ c. $|5 - \frac{1}{2x}| = 0$ d. $|1 + |x|| = 6$ e. $|x|^2 + |x| = 6$ f. $|2|^{2x} = 8$ g. $|\log_2|x^2| = 4$

2. Verify that $f(x) + f(y) \le f(x + y) \le x + y$ using f(x) = [x] when

a.
$$x = 4.25$$
, $y = 6.32$ b. $x = -2.01$, $y = \pi$

3. Sketch the graph of the following

a.
$$f(x) = |3x|$$
 b. $f(x) = 3|x|$ c. $f(x) = |3 + x|$

Solution:

1. a.
$$|x| = -5$$
 $\Rightarrow -5 \le x < -4$ c. $\left[5 - \frac{1}{2x} \right] \Rightarrow \left[\frac{10x - 1}{2x} \right] = 0$
b. $|2x + 3| = 9 \Rightarrow 9 \le 2x + 3 < 9 + 1$ $\Rightarrow 0 \le 10x - 1 < 1$
 $\Rightarrow 9 - 3 \le 2x < 9 + 4$ $\Rightarrow 1 \le 10x < 2$
 $\Rightarrow 6 \le 2x < 13$ $\Rightarrow \frac{1}{10} \le x < \frac{1}{5}$
 $\Rightarrow 3 \le x < \frac{13}{2}$

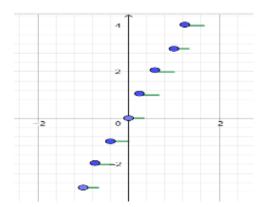
d.
$$[1 + [x]] = 6, \Rightarrow 6 \le 1 + [x] < 6 + 1$$
 f. $2^{\lfloor 2x \rfloor} = 8 \Rightarrow 2^{\lfloor 2x \rfloor} = 2^3$ $\Rightarrow 5 \le \lfloor x \rfloor < 6$ $[2x] = 3$ $3 \le 2x < 3 + 1$ e. $[x]^2 + [x] = 6 \Rightarrow \lfloor x \rfloor^2 + \lfloor x \rfloor - 6 = 0$ $\frac{3}{2} \le x < 2$ $\Rightarrow \lfloor x \rfloor + 3)(\lfloor x \rfloor - 2) = 0$ g. $\log_2 \lfloor x^2 \rfloor = 4$ $\Rightarrow \lfloor x \rfloor + 3 = 0 \text{ or } \lfloor x \rfloor - 2 = 0$ $\log_2 \lfloor x^2 \rfloor = 4$ $\Rightarrow \lfloor x \rfloor = -3 \text{ or } \lfloor x \rfloor = 2$ $\lfloor x^2 \rfloor = 16 \Leftrightarrow 16 \le x^2 < 17$ $.-3 \le x < -3 + 1 \text{ or } 2 \le x < 2 + 1$ $4 \le |x| < \sqrt{17}$ $.-3 \le x < -2 \text{ or } 2 \le x < 3$

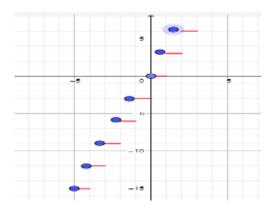
$$2. f(x) + f(y) \le f(x+y) \le x + y$$

a)
$$\lfloor 4.25 \rfloor + \lfloor 6.32 \rfloor \le \lfloor 4.25 + 6.32 \rfloor \le 4.25 + 6.32$$

 $.4 + 6 \le 10 \le 10.57 \Rightarrow 10 \le 10.57$
b) Left as an exercise for you!!!!!

3.
$$a. f(x) = [3x]$$
 b. $f(x) = 3[x]$





c)
$$c f(x) = [3 + x]$$

