Lesson 3: Rational functions and their graphs

Definition:

A function f which is written of the form $f(x) = \frac{P(x)}{O(x)}$ where P(x) and Q(x) are polynomials, $Q(x) \neq 0$ 0 is a rational function.

Example:

- 1. Find f(0), f(1) and f(2) for the function $f(x) = \frac{5x-8}{2-3x}$?
- 2. Determine the domain of $f(x) = \frac{5-3x}{1-x+2x^2-2x^3}$
- 3. If the ordered pair (1,3) and (0,6) belongs to the function $f(x) = \frac{ax^3 2bx + 3}{ax^2 + b}$, then what is the value of a and b?
- 4. Find the number or the numbers that makes the denominator zero?

a.
$$f(x) = \frac{x^2+1}{x^2-1}$$

a.
$$f(x) = \frac{x^2 + 1}{x^2 - 1}$$
 b. $f(x) = \frac{x^2 - x - 12}{x^2 + x - 6}$

Solution:

1.
$$f(x) = \frac{5x-8}{2-3x}$$
 $\Rightarrow f(0) = \frac{5(0)-6}{2-3(0)} = -3$
 $\Rightarrow f(1) = \frac{5(1)-6}{2-3(1)} = 1$
 $\Rightarrow f(1) = \frac{5(2)-6}{2-3(2)} = \frac{4}{-4} = -1$

2. domain of
$$f(x) = \frac{5-3x}{1-x+2x^2-2x^3}$$
 steps to find: 1. Factorize the denominator

2.find the zeros of denominator

$$Q(x) = 0 \implies 1 - x + 2x^2 - 2x^3 = 0 \iff 1 - x + 2x^2(1 - x) = 0$$

$$\iff 1 - x + 2x^2(1 - x) = 0$$

$$\iff (1 - x)(1 + 2x^2) = 0$$

$$\iff (1 - x)(1 + 2x^2) = 0 \implies x = 1 \text{ and } 2x^2 + 1 \neq 0$$

Domain =
$$R/\{1\}$$

3. $f(x) = \frac{ax^3 - 2bx + 3}{ax^2 + b}$ and $f(1) = 3$, $f(0) = 6$
 $\Rightarrow f(0)$, $\frac{a(0) - 2b(0) + 3}{a(0) + b} = 6 \Rightarrow (\frac{3}{b} = 6 \Rightarrow b = \frac{1}{2})$
 $\Rightarrow f(1)$, $\frac{a(1) - 2b(1) + 3}{a(1) + b} = \frac{a - 2b + 3}{a + b} = 3 \Rightarrow a - 2(\frac{1}{2}) + 3 = 3(a + \frac{1}{2})$
 $\Rightarrow a + 2 = 3a + \frac{3}{2} \Rightarrow 2a = 2 - \frac{3}{2} \Rightarrow a = \frac{1}{4}$
 $\therefore (a, b) = (\frac{1}{4}, \frac{1}{2})$

4. a.
$$f(x) = \frac{x^2 + 1}{x^2 - 1} \Longrightarrow x^2 - 1 = 0 \Longrightarrow x = \pm 1$$

the numbers that make denominator zero are -1 and 1

b.
$$f(x) = \frac{x^2 - x - 12}{x^2 + x - 6} \implies x^2 + x - 6 = 0 \implies (x + 3)(x - 2) = 0 \implies x = -3 \text{ or } x = 2$$

1.4. Graph of Rational Functions

Procedures following to draw graph of $f(x) = \frac{N(x)}{D(x)}$, where N(x) = numerator, D(x) = denominator and are polynomials.

- ✓ Determine domain
- ✓ Find x and y intercepts if any
- ✓ Identify asymptotes
- ✓ Check holes if any
- ✓ Study behavior of the graph near asymptotes
- ✓ Sketch the graph

Let $f(x) = \frac{N(x)}{D(x)}$ be a rational function:

- domain = $R/\{D(x) \neq 0\}$
- x- intercept, at y = 0 and y- intercept at x = 0

1.4.1. Asymptotes

• An asymptote of a curve is a line such that the distance between the curve and the line approaches to zero as one or both of x or y coordinates tends to infinity. Or viceversal.

Types of asymptotes

- i vertical asymptote
- ii horizontal asymptotes
- iii Oblique(slant) asymptote

a) Vertical Asymptotes

- Vertical line *l* obtained by D(x) = 0

Example:

1. Find the vertical asymptotes

$$a. \quad f(x) = \frac{2x+1}{x^2 - x - 2}$$

b.
$$f(x) = \frac{x^2 + 5x + 6}{x^2 - 9}$$

Solution:

a.
$$f(x) = \frac{2x+1}{x^2-x-2}$$

 $\Rightarrow D(x) = 0$
 $\Rightarrow x^2 - x - 2 = 0$
 $\Rightarrow (x-2)(x+1) = 0$
 $\Rightarrow x = 2 \text{ or } x = -1$

Therefore vertical asymptotes at

$$x = 2$$
 and $x = -1$
c. $f(x) = \frac{x+2}{x}$

b.
$$f(x) = \frac{x^2 + 5x + 6}{x^2 - 9} = \frac{(x+2)(x+3)}{(x-3)(x+3)} = \frac{x+2}{x-3}$$

 $\Rightarrow D(x) = 0$
 $\Rightarrow x - 3 = 0$
 $\Rightarrow x = 3$

vertical asymptotes at x = 3

$$\Rightarrow D(x) = 0$$

$$x = 0$$

Vertical asymptote at x = 0

ii. Horizontal Asymptotes

- Degree N(x) < Degree D(x), the horizontal asymptote is always at l: y = 0
- Degree N(x) = Degree D(x), the horizontal asymptote is at l: y = numerical quotient

Example:

2. Find horizontal asymptotes

a.
$$f(x) = \frac{5x}{x^2 + 1}$$

a.
$$f(x) = \frac{5x}{x^2 + 1}$$
 b. $f(x) = \frac{5x^2 + 2x - 4}{2x^2 - 6x + 1}$

Solution:

a.
$$f(x) = \frac{5x}{x^2 + 1}$$

b.
$$f(x) = \frac{5x^2 + 2x - 4}{2x^2 - 6x + 1}$$

, degreee of $N(x) < degree \ of D(x)$

$$degree \ of \ N(x) = degree \ of D(x)$$

y = 0 is the horizontal asymptote

horizontal asymptote at
$$y = \frac{5x^2}{2x^2} = \frac{5}{2}$$

i. Oblique asymptote

- Degree of N(x) > D(x) by one, then the function has oblique asymptote
- It must be determined by long division
- If a function has an oblique asymptote, then it doesn't have horizontal asymptote.

Example: determine the oblique asymptotes

a.
$$f(x) = \frac{3x^2 + 5}{x - 6}$$
 b. $f(x) = \frac{6x^3 + 2}{3x^2 + 1}$ c. $g(x) = \frac{5x^3 + 3}{12x - 7}$

$$b.f(x) = \frac{6x^3 + 2}{3x^2 + 1}$$

c.
$$g(x) = \frac{5x^3 + 3}{12x - 7}$$

Solution:

a.
$$f(x) = \frac{3x^2 + 5}{x - 6} = 3x + 18 + \frac{113}{x - 6}$$

c.
$$g(x) = \frac{5x^3 + 3}{12x - 7}$$

, then its oblique asymptote is at y = 3x + 18 degree N(x) is two more than degree of D(x)

b.
$$f(x) = \frac{6x^3 + 2}{3x^2 + 1} = 2x - 1 + \frac{3}{3x^2 + 1}$$
 then it has no oblique asymptote Then oblique asymptote at $y = 2x - 1$

Hole of the graph

It is detected when factors of N(x) and D(x) are cancelled to each other.

Example 3:

Identify whether the function has hole or not

1.
$$f(x) = \frac{x^2 - 5x - 6}{x^2 - 1}$$
 2. $f(x) = \frac{3x + 1}{3x^2 + 4x + 1}$

2.
$$f(x) = \frac{3x+1}{3x^2+4x+1}$$

Solution: 1.
$$f(x) = \frac{x^2 - 5x - 6}{x^2 - 1} = \frac{(x+1)(x-6)}{(x-1)(x+1)} = \frac{x-6}{x-1}$$

f has hole at $(x,y) = \left(-1,\frac{-1-6}{-1-1}\right) = \left(-1,\frac{7}{2}\right)$, because it x+1 is cancelled from both the numerator and denominator

2.
$$f(x) = \frac{3x+1}{3x^2+4x+1} = \frac{3x+1}{(3x+1)(x+1)} = \frac{1}{x+1}$$
, $3x + 1$ is the cancelled factor from both of numerator

and denominator. F has hole at
$$(x,y) = \left(-\frac{1}{3}, \frac{1}{-\frac{1}{3}+1}\right) = \left(-\frac{1}{3}, \frac{3}{2}\right)$$

Graph sketching

1. For each of the following functions find:

a.
$$f(x) = \frac{x+1}{x^2-1}$$

e. $f(x) = \frac{x^2-1}{x^2-1}$

b.
$$f(x) = \frac{x^2 - x - 6}{x - 2}$$

a.
$$f(x) = \frac{x+1}{x^2 - 1}$$
 b. $f(x) = \frac{x^2 - x - 6}{x - 2}$ c. $f(x) = \frac{x^3 - 1}{x^2 - 1}$ d. $f(x) = \frac{x + 1}{x - 3}$ e. $f(x) = \frac{x^2 - 1}{x + 1}$ g. $f(x) = \frac{x^3 + 1}{x^2 + 6x + 9}$

2. Show that the graph of $f(x) = \frac{3x^2 + 5x + 1}{x^2 - 1}$ crosses its horizontal asymptote?

3. Show that the graph of $f(x) = \frac{x^3 + x - 1}{x^2}$ crosses its oblique asymptote?

Solution:

a.
$$f(x) = \frac{x+1}{x^2-1}$$

i. domain:
$$x^2 - 1 = 0$$

 $\Rightarrow (x - 1)(x + 1) = 0 \Rightarrow x = \pm 1$
Dom $f = R \setminus \{-1,1\}$

Is false it has no x intercept.

x- intercept when y=0,

$$\Rightarrow 0 = \frac{x+1}{x^2-1} = \frac{x+1}{(x+1)(x-1)} = \frac{1}{x-1} \Rightarrow 1 = 0$$

$$y - intercept when x = 0$$

$$\Leftrightarrow y = \frac{0+1}{0-1} \Rightarrow y = -1$$

y - intercept when
$$x = 0$$

 $\Leftrightarrow y = \frac{0+1}{0-1} \Rightarrow y = -1$
y - intercept at $(0, -1)$

iii. asymptotes

vertical asymptote

$$f(x) = \frac{x+1}{x^2-1} = \frac{x+1}{(x-1)(x+1)} = \frac{1}{x-1}$$

$$f(x) = 0 \Rightarrow x - 1 = 0 \Rightarrow x = 0$$

horizontal asymptote or oblique degree
$$N(x) < degree D(x)$$

horizontal asymptote at
$$y = 0$$

Vertical asymptote at x = 1

No oblique asymptote!!

iv.

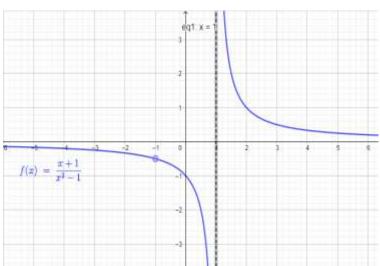
$$f(x) = \frac{x+1}{x^2-1} = \frac{x+1}{(x-1)(x+1)}$$

, x+1 is the cancelled factor

Hole at
$$(-1, -\frac{1}{2})$$

Behavior of the graph v.

- a. As x is getting closer and closer to vertical asymptote, y is increasing or decreasing indefinitely i.e. $x \to 1^+, Y \to \infty$ and $x \to 1^-, y \to -\infty$
- b. As $x \to \infty$, $y \to H$. A = 0 and $x \to -\infty$, $y \to H$. A



b.
$$f(x) = \frac{x^2 - x - 6}{x - 2}$$

$$, x - 2 = 0 \Longrightarrow x = 2$$

,
$$dom f = \mathbb{R} \setminus \{2\}$$

li. intercepts

x- intercepts when
$$y = 0$$

 $\Rightarrow 0 = \frac{x^2 - x - 6}{x - 2} \Leftrightarrow x^2 - x - 6 = 0$
 $\Rightarrow 0 = \frac{x^2 - x - 6}{x - 2} \Leftrightarrow x^2 - x - 6 = 0$
 $\Rightarrow 0 = \frac{x^2 - x - 6}{x - 2} \Leftrightarrow x^2 - x - 6 = 0$
 $\Rightarrow 0 = \frac{x^2 - x - 6}{x - 2} \Leftrightarrow x^2 - x - 6 = 0$
 $\Rightarrow 0 = \frac{x^2 - x - 6}{x - 2} \Leftrightarrow x^2 - x - 6 = 0$
 $\Rightarrow 0 = \frac{x^2 - x - 6}{x - 2} \Leftrightarrow x^2 - x - 6 = 0$
 $\Rightarrow 0 = \frac{x^2 - x - 6}{x - 2} \Leftrightarrow x^2 - x - 6 = 0$
 $\Rightarrow 0 = \frac{x^2 - x - 6}{x - 2} \Leftrightarrow x^2 - x - 6 = 0$
 $\Rightarrow 0 = \frac{x^2 - x - 6}{x - 2} \Leftrightarrow x^2 - x - 6 = 0$
 $\Rightarrow 0 = \frac{x^2 - x - 6}{x - 2} \Leftrightarrow x = 3, -2$
 $\Rightarrow 0 = \frac{x^2 - x - 6}{x - 2} \Leftrightarrow x = 3, -2$
 $\Rightarrow 0 = \frac{x^2 - x - 6}{x - 2} \Leftrightarrow x = 3, -2$
 $\Rightarrow 0 = \frac{x^2 - x - 6}{x - 2} \Leftrightarrow x = 3, -2$

$$(x-3)(x+2) = 0 \Rightarrow x = 3, -2$$

X – intercept at (-2,0) and (3,0)

i. **Asymptotes**

Vertical

$$D(x) = 0 \Leftrightarrow x - 2 = 0$$

, vertical asymptote at x = 2

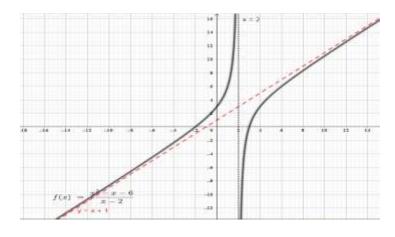
No horizontal asymptote!!

since degN(x) > deg D(x)

Behavior of the graph ii.

As
$$x \to 2^-$$
, $y \to \infty$ and $x \to 2^+$, $y \to -\infty$

As
$$x \to \pm \infty$$
, $y \to l$: $y = x + 1$



y - intercept when
$$x = 0$$

 $y = \frac{0^2 - 0 - 6}{0 - 2} = 3$

Oblique Asymptote using long division $f(x) = \frac{x^2 - x - 6}{x - 2} = x + 1 - \frac{4}{x - 2}$

$$f(x) = \frac{x^2 - x - 6}{x - 2} = x + 1 - \frac{4}{x - 2}$$

oblique asymptote at $l: y = x + 1$

C.
$$f(x) = \frac{x^3 - 1}{x^2 - 1} = \frac{(x - 1)(x^2 + x + 1)}{(x - 1)(x + 1)}$$

, i. domain:

$$(x-1)(x+1) = 0 \implies x = -1,1$$

,
$$Dom f = \mathbb{R} \setminus \{-1,1\}$$

ii. intercepts

$$x$$
- intercept when $y = 0$

$$0 = \frac{x^3 - 1}{x^2 - 1} = \frac{x^2 + x + 1}{x + 1}$$
 implies $x^2 + x + 1$ cannot be zero

It has no x-intercept

i. Asymptotes

Vertical

$$f(x) = \frac{x^3 - 1}{x^2 - 1} = \frac{(x - 1)(x^2 + x + 1)}{(x - 1)(x + 1)} = \frac{x^2 + x + 1}{x + 1}$$

$$D(x) = 0 \Longrightarrow x + 1 = 0 \Longrightarrow x = -1$$

oblique asymptote

y- intercept when x = 0

 $y = \frac{0^3 - 1}{0^2 - 1} \Longrightarrow y = 1$ y - intercept at (0, 1)

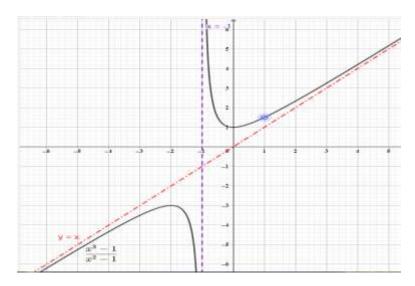
$$f(x) = \frac{x^2 + x + 1}{x + 1} = x$$

oblique asymptote at y = x

Vertical asymptote at x = 1

As
$$x \to -1^+$$
, $y \to \infty$ and $x \to -1^-$, $y \to -\infty$

As
$$x \to \pm \infty$$
 $y \to 0$. A. $l: y = x$



$$d. f(x) = \frac{x+1}{x-3}$$

i. **domain**:
$$x - 3 = 0 \Rightarrow x = 3$$

Domain $f = \mathbb{R} \setminus \{3\}$

ii.intercepts

x- Intercept when
$$y = 0$$

$$0 = \frac{x+1}{x-3} \Longrightarrow x+1 = 0$$

$$, \Longrightarrow x = -1$$

X- Intercept at (-1, 0)

Y- intercept when
$$x = 0$$

$$y = \frac{0+1}{0-3} \Longrightarrow y = -\frac{1}{3}$$

y – intercept at
$$(0, -\frac{1}{3})$$

iv . Asymptotes Vertical

$f(x) = \frac{x+1}{x-3}$ $D(x) = 0 \Leftrightarrow x - 3 = 0$,x = 3

vertical asymptote at x = 3

horizontal asymptote

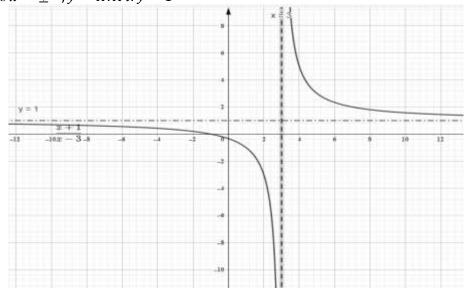
$$degN(x) = degD(x) = 1$$

H.A. at $y = 1$

No Oblique Asymptote And Hole

behavior of the graph iii.

as
$$x \to 3^+, y \to \infty$$
 and $x \to 3^-, y \to -\infty$, as $x \to \pm \infty, y \to H$. A $l: y = 1$



e.
$$f(x) = \frac{x^2 - 1}{x + 1}$$

i. domain

$$x + 1 = 0 \implies x = -1$$

$$dom f = R\{-1\}$$

ii.vertical

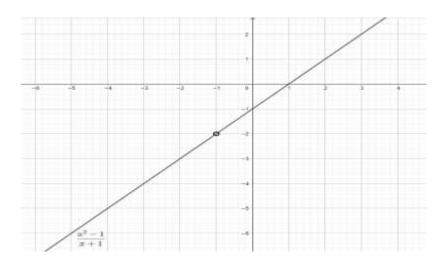
Oblique Asymptote

$$y = x - 1$$
 is the $0.A$

it shows, there is no V.A.

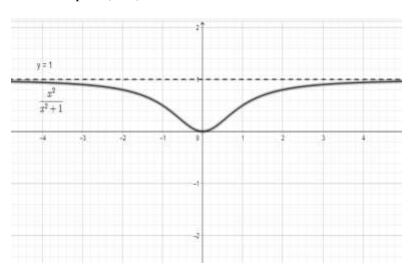
lets observe $f(x) = \frac{x^2 - 1}{x + 1} = \frac{(x - 1)(x + 1)}{x + 1} = x - 1$

Hole at (-1, -2)



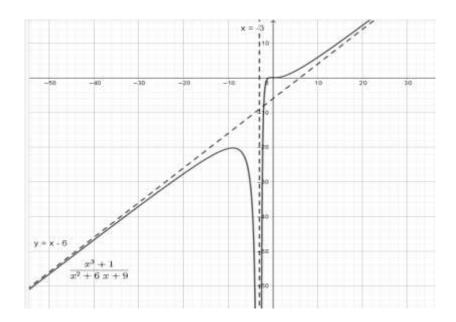
a.
$$f(x) = \frac{x^2}{x^2 + 1}$$
• Domain f= R

- H.A. at y = 1
- No V.A., NO HOLE
- X- AND Y- intercepr at (0,0)



g.
$$f(x) = \frac{x^3+1}{x^2+6x+9}$$

- Domain $f = R\{-3\}$ X- and y- intercepts at (-1, 0) and (0, 1/9)
- V.A. at x = -3
- O.A. at y = x 6
- Behavior of the graph, as $x \to -3^+$, $y \to -\infty$ and $x \to -3^-$, $y \to -\infty$



2. Show that the graph of $f(x) = \frac{3x^2 + 5x + 1}{x^2 - 1}$ crosses its horizontal asymptote?

Answer:

$$f(x) = \frac{3x^2 + 5x + 1}{x^2 - 1}$$

- First we determine the horizontal asymptote:

First we determine the norizontal asymptote:

H.A: at
$$y = 3$$

Equate f with H.A. if it crosses

H. $A = \frac{3x^2 + 5x + 1}{x^2 - 1} \Rightarrow 3 = \frac{3x^2 + 5x + 1}{x^2 - 1}$
 $3x^2 - 3 = 3x^2 + 5x + 1 \Rightarrow -3 = 5x + 1$
 $\Rightarrow 5x = -4 \Rightarrow x = -\frac{4}{5}$

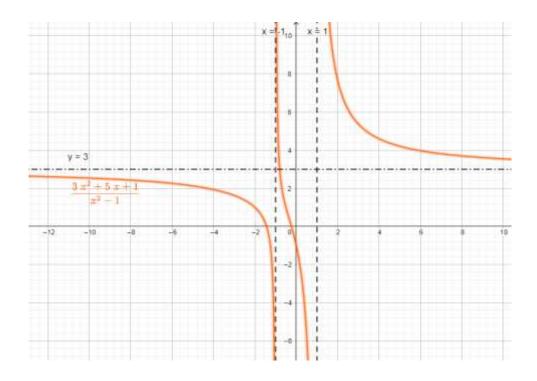
fore the graph crosses its horizontal asymptote at

$$3x^2 - 3 = 3x^2 + 5x + 1 \Rightarrow -3 = 5x + 1$$

$$\Rightarrow 5x = -4 \Rightarrow x = -\frac{4}{5}$$

Therefore the graph crosses its horizontal asymptote at $\left(-\frac{4}{5},3\right)$

Look at this on the graph below



3. Show that the graph of $f(x) = \frac{x^3 + x - 1}{x^2}$ crosses its oblique asymptote?

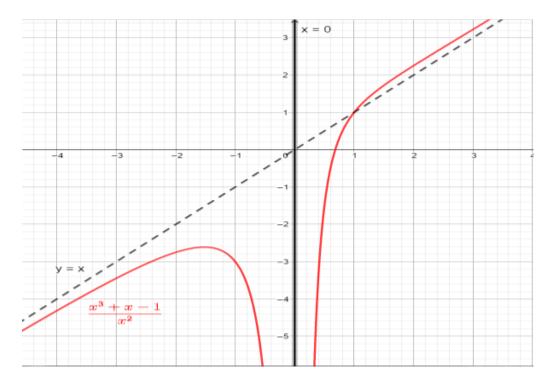
Solution:

Determine its oblique asymptote

- Deg. $N(x) > \deg D(x)$ by one
- use long division
- oblique asymptote is at y = x
- •
- if it crosses Q.A. F(x) = 0. A. Equate $x = \frac{x^3 + x 1}{x^2} \Leftrightarrow x^3 = x^3 + x 1$ $0 = x 1 \Rightarrow x = 1$

The graph crosses its oblique asymptote at (1, 1)

See the graph below



Note:

- 1. The graph of any rational function never crosses its vertical asymptote.
- 2. The graph of any rational function may or may not cross its horizontal and oblique asymptotes.

Lesson 4: Application of Rational Expressions and Rational Functions

The concept is useful on our day today activities like:

- Work rate problems
- Comparison (Variation) problems
- Uniform motion problems
- Revenue problems
- Critical analysis and synthesis

Work rate and shared problems

Examples:

- 1. Roman can do her home-work assignments in 100 minutes. It takes Dergu about two hours to complete a given assignment. How long will it take two of them working together to complete the assignment?
- 2. Zerihun and Aschenaki painted a fence in four hours. If Ashenaki has painted the same fence before by himself in seven hours, how long would it take Zerihun on his own?
- 3. Zemenu and selam working together can do ajob in 6 hours. Zemenu working alone could have completed the job in 5 hours earlier than selam could have done alone. How much time could each worker need to complete the whole job alone?

General illustration to solve such kind of problems

Let A be the time taken to complete a certain job by worker one and B be the time taken by the second worker to complete the job.

Rate of accomplishing the job of the first worker $=\frac{1}{A}$ and rate of second worker $=\frac{1}{B}$

Rate of working together $\frac{1}{A} + \frac{1}{B} = \frac{1}{x}$, if x is the time it takes to complete the job together.

Solution:

1. Given Roman's rate of doing her assignment = $\frac{1}{100}$ in a minute

Dergu's rate of doing the same assignment $=\frac{1}{120}$ in a minute

And let x be the time taken in minute to complete the assignment when they do together

Then $\frac{1}{100} + \frac{1}{120} = \frac{1}{x}$ is the general equation

Implies $\frac{1}{100} + \frac{1}{120} = \frac{1}{x} \Rightarrow \frac{120 + 100}{12000} = \frac{1}{x} \Leftrightarrow 220x = 12000$ Therefore $x = \frac{12000}{220} = 54.54$ mimnutes

Ans.:- Roman and Dergu take 54.54 minutes to complete their assignment together.

NB. You have to check that the joint work rate time is less than individuals work rate!!!!!