Lesson 1: Concept of Matrices

Definition:

Let m and n be positive integers. A rectangular array of numbers in \mathbb{R} of the form: / ``

$$A = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \vdots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{pmatrix}$$
 is an m by n or m x n matrix.

Where m: shows the horizontal rows and n: shows the vertical columns

Note: 1.

i. the ith row of A =
$$(a_{i1}a_{i2}a_{i3}a_{i4} \dots a_{in})$$

ii. The jth column of A = $\begin{pmatrix} a_{1j} \\ a_{2j} \\ \vdots \\ a_{mi} \end{pmatrix}$

 $\langle a_{mj} \rangle$ The real number a_{il} is the (i, j) – entry or element of A. The Matrix A is written as $A = (a_{ij})_{mn}$ iii.

iv.

v.
$$m \times n$$
 is the size or order of matrix A.

Examples:

1. Let matrix A =
$$\begin{pmatrix} 1 & 5 & 6 & 3 \\ 2 & 8 & -1 & 0 \\ 4 & -9 & 12 & 10 \end{pmatrix}$$
 then find
a number of rows and columns

- a. number of rows and columns
- b. a_{23}
- c. *a*₃₃
- d. Size or order of the matrix
- e. entry(3,4)
- 2. Find: size and Elements for the matrix

a.
$$B = (5 \ 9 \ -3.5 \ 0.897),$$

b. $A = \begin{pmatrix} 4 \\ 8 \\ 0 \end{pmatrix}$
c. $C = (5)$

- a. Matrix A has 3- rows and 4- columns
- b. a_{23} : 2- stands for the 2nd row and 3- stands for the 3rd column, the intersection number of 2nd row and 3rd column is $a_{23} = -1$
- c. $a_{23} = intersection number of 3rd row and 3rd column is 12.$
- d. Size of A = 3by 4 or 3×4

e. .entry(3,4)= $a_{34} = 10$

- 2. a. Matrix B has 1- row and 3- columns,
 - Size of B = 1×3
 - Elements of B: $b_{11} = 5$, $b_{12} = 9$ $,b_{13} = -3.5$ $b_{14} = 0.897$

b. matrix A has 3- rows and 1- column:

- Size of $A = 3 \times 1$
- Elements of A ; $a_{11} = 4$, $a_{21} = 8$ and $a_{31} = 0$

c.matrix C has 1-row and 1- column

- Size of $C = 1 \times 1$
- Elements of C : $a_{11} = 5$, (matrix C has only one entry)
- 3. Three students Selam, Hagos and Chaltu have a number of 10, 50 and 25 cents coin in their pocket. The following table shows what they have:

	Students name			
No of coins		Selam	Hagos	Chaltu
	10 cents coin	2	6	4
	50 cents coin	3	2	0
	25 cents coin	4	0	5

Find

- a. write the matrix form of the problem
- b. size of the matrix
- c. what does a_{31} and a_{23} tells

Solution:

a. let A denoting number of coins they have

$$A = \begin{pmatrix} 2 & 6 & 4 \\ 3 & 2 & 0 \\ 4 & 0 & 5 \end{pmatrix}$$

b. size of A= 3 × 3
c. $a_{31} = 4$, tells Selam has four 25 cent coins
, $a_{23} = 0$, tells Chaltu has no 50 cent coin.

- 4. Let $A = (a_{ij})_{23}$ and $a_{ij} = j i$, then find matrix A?
- 5. Construct a 3 × 4 matrix A= $(a_{ij})_{34}$, where $a_{ij} = 3i 2j$

Solution:

4.let
$$A = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \end{pmatrix}$$

 $a_{ij} = j - i, \Rightarrow a_{11} = 1 - 1 = 0,$
 $a_{12} = 2 - 1 = 1$
 $a_{12} = 2 - 1 = 1$
 $a_{31} = 3 - 1 = 2$
Therefore $A = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \end{pmatrix} = \begin{pmatrix} 0 & 1 & 2 \\ -1 & 0 & -1 \end{pmatrix}$
5.Let $A = \begin{pmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34} \end{pmatrix}$ and $a_{ij} = 3i - 2j$
Then $a_{ij} = 3i - 2$
 $\Rightarrow a_{11} = 3 * 1 - 2 * 1 = 3 - 2 = 1$
 $a_{12} = 3 * 1 - 2 * 2 = 3 - 4 = -1$
 $a_{13} = 3 * 1 - 2 * 3 = 3 - 6 = -3$
 $a_{14} = 3 * 1 - 2 * 4 = 3 - 8 = -5$
 $a_{34} = 3 * 3 - 2 * 4 = 9 - 8 = 1$

$$a_{21} = 3 * 2 - 2 * 1 = 6 - 2 = 4$$

$$a_{22} = 3 * 2 - 2 * 2 = 6 - 4 = 2$$

$$a_{23} = 3 * 2 - 2 * 3 = 6 - 6 = 0$$

$$a_{24} = 3 * 2 - 2 * 4 = 6 - 8 = -2$$
Then matrix $A = \begin{pmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34} \end{pmatrix} = \begin{pmatrix} 1 & -1 & -3 & -5 \\ 4 & 2 & 0 & 2 \\ 7 & 5 & 3 & 1 \end{pmatrix}$

1.1. Types Of Matrices

There are different types of matrices:

- 1. Column matrix(column vector):
 - A matrix having only one column $\begin{pmatrix} a_1 \\ a_1 \end{pmatrix}$

$$A = \begin{pmatrix} a_2 \\ \vdots \\ a_m \end{pmatrix} \text{ is a column matrix}$$

2. Row matrix (row vector):

• A matrix having only one row

• A=
$$(a_1 \quad a_2 \quad \dots \quad a_n)$$
 is a row matrix

- 3. Zero matrix:
 - A matrix with all zero entries

•
$$A = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

- 4. Square matrix:
 - A matrix in which the number of rows is equal to number of columns.

• $A = \begin{pmatrix} 2 & 3 \\ 4 & 5 \\ 2 & 6 & 4 \end{pmatrix}$ is a 2 × 2 square matrix

•
$$A = \begin{pmatrix} 3 & 2 & 0 \\ 4 & 0 & 5 \end{pmatrix}$$
 is a 3 × 3 square matrix

- 5. Diagonal matrix:
 - A square matrix with all zero entries except diagonal entries.
 - $(3 \ 0 \ 0)$

$$A = \begin{pmatrix} 0 & 2 & 0 \\ 0 & 0 & 5 \end{pmatrix}$$
 is a diagonal matrix

- 6. Scalar matrix :
 - A diagonal matrix all diagonal entries are equal.

$$A = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{pmatrix}$$
 is a scalar matrix

7. Identity matrix:

• A scalar or diagonal matrix with all the diagonal entries are equal to 1.

$$A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
 is an identity matrix

8. Triangular matrix:

- a. Upper Triangular Matrix:
 - A square matrix whose entries below the main diagonal are all zero.

•
$$A = \begin{pmatrix} 2 & 6 & 4 \\ 0 & 2 & 1 \\ 0 & 0 & 5 \end{pmatrix}$$
 is an upper triangular matrix

- b. Lower Triangular Matrix :
 - A square matrix whose entries above the main diagonal are all zero. (2, 0, 0)
 - $A = \begin{pmatrix} 2 & 0 & 0 \\ 3 & 2 & 0 \\ 4 & 0 & 5 \end{pmatrix}$ is a lower triangular matrix

Equality of Matrices

Definition:

 $A = (a_{ij})_{mn}$ and $B = (b_{ij})_{pq}$ are said to be equal if and only if

- They have the same size i.e. m = p and n = q
- The corresponding entries are equal i.e. $a_{ij} = b_{ij}$

Example:

1. Identify the following matrices are equal or not? $a_{A} = \begin{pmatrix} 2 & 3 \\ 2 & 3 \end{pmatrix} and B = \begin{pmatrix} 5 & 3 \\ 2 & 3 \end{pmatrix}$

a.
$$A = \begin{pmatrix} 4 & 5 \end{pmatrix}$$
 and $B = \begin{pmatrix} 4 & 2 \end{pmatrix}$
b. $A = \begin{pmatrix} 0 & 1 & 2 \\ -1 & 0 & -1 \end{pmatrix}$ and $B = \begin{pmatrix} 0 & 1 & 2 \\ -1 & 0 & -1 \end{pmatrix}$

2. Find the values of x, y, a and b if

a.
$$\binom{3x+4y}{a+b} \binom{6}{2a-b} \binom{x-2y}{-3} = \binom{2}{5} \binom{6}{-5} \binom{4}{3}$$

b. $\binom{x^2-1}{-1} \binom{1}{a+b^2} \binom{2x-2}{-1} = \binom{2x-2}{-1} \binom{2x-2}{-3a+b^2+12} \binom{2}{-1}$

Solution:

1. a.
$$A = \begin{pmatrix} 2 & 3 \\ 4 & 5 \end{pmatrix}$$
 and $B = \begin{pmatrix} 5 & 3 \\ 4 & 2 \end{pmatrix}$
Matrices $A \neq B$ since $2 \neq 5$ and $5 \neq 2$
b. $A = \begin{pmatrix} 0 & 1 & 2 \\ -1 & 0 & -1 \end{pmatrix}$ and $B = \begin{pmatrix} 0 & 1 & 2 \\ -1 & 0 & -1 \end{pmatrix}$
Matrices $A = B$
a. $\begin{pmatrix} 3x + 4y & 6 & x - 2y \\ a + b & 2a - b & -3 \end{pmatrix} = \begin{pmatrix} 2 & 6 & 4 \\ 5 & -5 & 3 \end{pmatrix}$ if and only if
The following are satisfied:
 $, 3x + 4y = 2$ and $x - 2y = 4$ similarly $a + b = 5$ and $2a - b = -5$
 $\begin{pmatrix} 3x + 4y = 2 \\ x - 2y = 4 \end{pmatrix}$
 $\begin{pmatrix} a + b = 5 \\ 2a - b = -5 \end{pmatrix}$
 $, 2 * \begin{pmatrix} 3x + 4y = 2 \\ 2x - 4y = 8 \end{pmatrix}$
 $, 5x = 10 \Rightarrow x = 2$
 $, y = \frac{x - 4}{2} = \frac{2 - 4}{2} = -2$
 $\therefore x = 2, y = -2$
b. $\begin{pmatrix} x^2 - 1 & 1 & 2 \\ -1 & a + b^2 & -1 \end{pmatrix} = \begin{pmatrix} 2x - 2 & 1 & 2 \\ -1 & -3a + b^2 + 12 & -1 \end{pmatrix}$
 $, x^2 - 1 = 2x - 2$ and $a + b^2 = -3a + b^2 + 12$
 $, x^2 - 1 - 2x + 2 = 0$
 $, x^2 - 2x + 1 = 0$
 $, (x - 1)^2 = 0$
 $\Rightarrow a = 3 \text{ for any } b \in \mathbb{R}$

Lesson 2: Operations on Matrices

- i. Addition on matrices
- ii. Subtraction on matrices
- iii. Multiplication

i. Addition Of Matrices

Let $A = (a_{ij})_{mn}$ and $B = (b_{ij})_{mn}$ be two matrices of the same order, then their sum or difference denoted by $A \pm B = (a_{ij})_{mn} \pm (b_{ij})_{mn} = (a_{ij} \pm b_{ij})_{mn}$ where $m, n \in Z^+, a, b \in R$

Example:

1. Let
$$A = \begin{pmatrix} 3 & 5 & 2.1 \\ 4 & 2 & 6 \\ 0 & -1 & 5 \end{pmatrix}$$
 and $B = \begin{pmatrix} 7 & 6 & 5 \\ 10 & 2 & 2.15 \\ 9 & 8 & -6.5 \end{pmatrix}$ be matrices , then find their sum
 $A = \begin{pmatrix} a+b & 3c & b-2a \\ d-c & 5d & 41 \\ 2a & 9 & a+5 \end{pmatrix}$ and $B = \begin{pmatrix} b & 3c & 2a \\ d-c & -5d & 1 \\ -2a & 9 & 5-b \end{pmatrix}$
Solution:
1. $A + B = \begin{pmatrix} 3 & 5 & 2.1 \\ 4 & 2 & 6 \\ 0 & -1 & 5 \end{pmatrix} + \begin{pmatrix} 7 & 6 & 5 \\ 10 & 2 & 2.15 \\ 9 & 8 & -6.5 \end{pmatrix} = \begin{pmatrix} 3+7 & 5+6 & 2.1+5 \\ 4+10 & 2+2 & 6+2.15 \\ 0+9 & -1+8 & 5-6.5 \end{pmatrix}$
 $= \begin{pmatrix} 10 & 11 & 7.1 \\ 14 & 4 & 8.15 \\ 9 & 7 & -1.5 \end{pmatrix}$
2. $A + B = \begin{pmatrix} a+b & 3c & b-2a \\ d-c & 5d & 41 \\ 2a & 9 & a+5 \end{pmatrix} + \begin{pmatrix} b & 3c & 2a \\ d-c & -5d & 1 \\ -2a & 9 & 5-b \end{pmatrix}$
 $= \begin{pmatrix} a+b+b & 3c+3c & b-2a+2a \\ d-c & -5d & 1 \\ -2a & 9 & 5-b \end{pmatrix}$
 $= \begin{pmatrix} a+b+b & 3c+3c & b-2a+2a \\ d-c+d-c & 5d+(-5d) & 41+1 \\ 2a+(-2a) & 9+9 & a+5+5-b \end{pmatrix}$
 $= \begin{pmatrix} a+2b & 6c & b \\ 2d-2c & 0 & 42 \\ 0 & 18 & a-b+10 \end{pmatrix}$
ii. Subtraction of Matrices

Let $A = (a_{ij})_{mn}$ and $B = (b_{ij})_{mn}$ be two matrices of the same order, then: their difference denoted by $A - B = (a_{ij})_{mn} - (b_{ij})_{mn} = (a_{ij} - b_{ij})_{mn}$ where $m, n \in Z^+, a, b \in R$

Example:

2.Let
$$A = \begin{pmatrix} 3 & 0 & 8 \\ 4 & 4 & 6 \\ 0 & -1 & 5 \end{pmatrix}$$
 and $B = \begin{pmatrix} 7 & 6 & 5 \\ 10 & -8 & 9 \\ 9 & 12 & -11 \end{pmatrix}$ Then find their difference

2.
$$A - B = \begin{pmatrix} 3 & 0 & 8 \\ 4 & 4 & 6 \\ 0 & -1 & 5 \end{pmatrix} - \begin{pmatrix} 7 & 6 & 5 \\ 10 & -8 & 9 \\ 9 & 12 & -11 \end{pmatrix} = \begin{pmatrix} 3 - 7 & 0 - 6 & 8 - 5 \\ 4 - 10 & 4 - (-8) & 6 - 9 \\ 0 - 9 & -1 - 12 & 5 - (-11) \end{pmatrix}$$

$$= \begin{pmatrix} -4 & -6 & 3\\ -6 & 12 & -3\\ -9 & -13 & 16 \end{pmatrix}$$

Properties of Addition of Matrices

Let A , B and C be matrices of real numbers of the same order, then the following properties are satisfied

- A + B = B + A Commutative property
- A + (B + C) = (A + B) + C.....Associative property
- A + (-A) = 0 Existence of additive inverse

Examples:

1. Let
$$A = \begin{pmatrix} 2 & 1 \\ 4 & 3 \end{pmatrix}$$
, $B = \begin{pmatrix} -3 & 6 \\ 1 & -2 \end{pmatrix}$, $C = \begin{pmatrix} -3 & 7 \\ 5 & 2 \end{pmatrix}$ and $D = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$ find
a. $A + B$
b. $B + A$
c. $(A + B) + C$
c. $(A + B) + C$
d. $A + (B + C)$
f. $A + (-A)$

Solution:

a.
$$A + B = \begin{pmatrix} 2 & 1 \\ 4 & 3 \end{pmatrix} + \begin{pmatrix} -3 & 6 \\ 1 & -2 \end{pmatrix} = \begin{pmatrix} -1 & 7 \\ 5 & 1 \end{pmatrix}$$

b. $B + A = \begin{pmatrix} -3 & 6 \\ 1 & -2 \end{pmatrix} + \begin{pmatrix} 2 & 1 \\ 4 & 3 \end{pmatrix} = \begin{pmatrix} -1 & 7 \\ 5 & 1 \end{pmatrix}$

 \therefore A +B = B + A since addition is commutative

c.
$$(A + B) + C = \left(\begin{pmatrix} 2 & 1 \\ 4 & 3 \end{pmatrix} + \begin{pmatrix} -3 & 6 \\ 1 & -2 \end{pmatrix} \right) + \begin{pmatrix} -3 & 7 \\ 5 & 2 \end{pmatrix}$$

$$= \begin{pmatrix} 2 + (-3) & 1 + 6 \\ 4 + 1 & 3 + (-2) \end{pmatrix} + \begin{pmatrix} -3 & 7 \\ 5 & 2 \end{pmatrix}$$

$$= \begin{pmatrix} -1 & 7 \\ 5 & 1 \end{pmatrix} + \begin{pmatrix} -3 & 7 \\ 5 & 2 \end{pmatrix}$$

$$= \begin{pmatrix} -4 & 14 \\ 10 & 3 \end{pmatrix}$$

d. A+ (B+C) =
$$\begin{pmatrix} 2 & 1 \\ 4 & 3 \end{pmatrix} + \begin{pmatrix} -3 & 6 \\ 1 & -2 \end{pmatrix} + \begin{pmatrix} -3 & 7 \\ 5 & 2 \end{pmatrix} \end{pmatrix}$$

= $\begin{pmatrix} 2 & 1 \\ 4 & 3 \end{pmatrix} + \begin{pmatrix} -3 + (-3) & 6 + 7 \\ 1 + 5 & -2 + 2 \end{pmatrix}$

$$= \begin{pmatrix} 2 & 1 \\ 4 & 3 \end{pmatrix} + \begin{pmatrix} -6 & 13 \\ 6 & 0 \end{pmatrix}$$

$$= \begin{pmatrix} 2+(-6) & 1+13 \\ 4+6 & 3+0 \end{pmatrix}$$

$$= \begin{pmatrix} -4 & 14 \\ 10 & 3 \end{pmatrix}$$

$$\therefore (A+B) + C = A+ (B+C) \text{ since addition is associative}$$

e. $A+D = \begin{pmatrix} 2 & 1 \\ 4 & 3 \end{pmatrix} + \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 2+0 & 1+0 \\ 4+0 & 3+0 \end{pmatrix} = \begin{pmatrix} 2 & 1 \\ 4 & 3 \end{pmatrix} = A$

$$\therefore D = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \text{ an additive identity of 2by2 matrices}$$

f. $A+(-A) = A - A = \begin{pmatrix} 2 & 1 \\ 4 & 3 \end{pmatrix} - \begin{pmatrix} 2 & 1 \\ 4 & 3 \end{pmatrix} = \begin{pmatrix} 2-2 & 1-1 \\ 4-4 & 3-3 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$

iii. Multiplication of matrices

a. Scalar Multiplication

Definition:
Let
$$A = (a_{ij})_{mn}$$
 be any matrix and $r \in R$, then $rA = r(a_{ij})_{mn} = (ra_{ij})_{mn}$

Example:

1. Let
$$A = \begin{pmatrix} 3 & 0 & 8 \\ 4 & 4 & 6 \\ 0 & -1 & 5 \end{pmatrix}$$
 be a 3 by 3 matrix then find:
a. $6A$ b. $\frac{1}{2}A$ c. $-2(3A)$
2. Given $A = \begin{pmatrix} 1 & 0 & -2 \\ 1 & 2 & 3 \end{pmatrix}$ and $B = \begin{pmatrix} -4 & 2 & 0 \\ -1 & 1 & 3 \end{pmatrix}$, then find
a. $2A + 3B$ b. $(1+3)A$
3. Given $A = \begin{pmatrix} 1 & 2 & -3 \\ 5 & 0 & 2 \\ 3 & -1 & 1 \end{pmatrix}$ and $B = \begin{pmatrix} 3 & -1 & 2 \\ 4 & 2 & 5 \\ 2 & 0 & 3 \end{pmatrix}$, find matrix C that
satisfy $A + 2C = 3B$

a.
$$6A = 6\begin{pmatrix} 3 & 0 & 8 \\ 4 & 4 & 6 \\ 0 & -1 & 5 \end{pmatrix} = \begin{pmatrix} 6 \times 3 & 6 \times 0 & 6 \times 8 \\ 6 \times 4 & 6 \times 4 & 6 \times 6 \\ 6 \times 0 & 6 \times -1 & 6 \times 5 \end{pmatrix} = \begin{pmatrix} 18 & 0 & 48 \\ 24 & 24 & 36 \\ 0 & -6 & 30 \end{pmatrix}$$

b.
$$\frac{1}{2}A = \frac{1}{2}\begin{pmatrix} 3 & 0 & 8 \\ 4 & 4 & 6 \\ 0 & -1 & 5 \end{pmatrix} = \begin{pmatrix} \frac{1}{2} \times 3 & \frac{1}{2} \times 0 & \frac{1}{2} \times 8 \\ \frac{1}{2} \times 4 & \frac{1}{2} \times 4 & \frac{1}{2} \times 6 \\ \frac{1}{2} \times 0 & \frac{1}{2} \times -1 & \frac{1}{2} \times 5 \end{pmatrix} = \begin{pmatrix} \frac{3}{2} & 0 & 4 \\ 2 & 2 & 3 \\ 0 & -\frac{1}{2} & \frac{5}{2} \end{pmatrix}$$

c.
$$-2(3A) = -2 \begin{pmatrix} 3 \begin{pmatrix} 3 & 0 & 8 \\ 4 & 4 & 6 \\ 0 & -1 & 5 \end{pmatrix} \end{pmatrix} = -2 \begin{pmatrix} 3 \times 3 & 3 \times 0 & 3 \times 8 \\ 3 \times 4 & 3 \times 4 & 3 \times 6 \\ 3 \times 0 & 3 \times -1 & 3 \times 5 \end{pmatrix}$$
$$= -2 \begin{pmatrix} 9 & 0 & 24 \\ 12 & 12 & 18 \\ 0 & -3 & 15 \end{pmatrix} = \begin{pmatrix} -2 \times 9 & -2 \times 0 & -2 \times 24 \\ -2 \times 12 & -2 \times 12 & -2 \times 18 \\ -2 \times 0 & -2 \times -3 & -2 \times 15 \end{pmatrix}$$
$$= \begin{pmatrix} -18 & 0 & -48 \\ -24 & -24 & -36 \\ 0 & 6 & -30 \end{pmatrix}$$

1. a. $2 A + 3B = 2 \begin{pmatrix} 1 & 0 & -2 \\ 1 & 2 & 3 \end{pmatrix} + 3 \begin{pmatrix} -4 & 2 & 0 \\ -1 & 1 & 3 \end{pmatrix} = \begin{pmatrix} 2 & 0 & -4 \\ 2 & 4 & 6 \end{pmatrix} + \begin{pmatrix} -12 & 6 & 0 \\ -3 & 3 & 9 \end{pmatrix}$ $= \begin{pmatrix} -10 & 6 & -4 \\ -1 & 7 & 15 \end{pmatrix}$

b.
$$(1+3) A = 4A = 4 \begin{pmatrix} 1 & 0 & -2 \\ 1 & 2 & 3 \end{pmatrix} = \begin{pmatrix} 4 & 0 & -8 \\ 4 & 8 & 12 \end{pmatrix}$$

2.
$$A + 2C = 3B \iff 2C = 3B - A$$
$$\implies C = \frac{1}{2}(3B - A) = \frac{1}{2} \begin{pmatrix} 3\begin{pmatrix} 3 & -1 & 2\\ 4 & 2 & 5\\ 2 & 0 & 3 \end{pmatrix} - \begin{pmatrix} 1 & 2 & -3\\ 5 & 0 & 2\\ 3 & -1 & 1 \end{pmatrix} \end{pmatrix}$$
$$= \frac{1}{2} \begin{pmatrix} \begin{pmatrix} 9 & -3 & 6\\ 12 & 6 & 15\\ 6 & 0 & 9 \end{pmatrix} - \begin{pmatrix} 1 & 2 & -3\\ 5 & 0 & 2\\ 3 & -1 & 1 \end{pmatrix} \end{pmatrix}$$
$$= \frac{1}{2} \begin{pmatrix} \begin{pmatrix} 9 - 1 & -3 - 2 & 6 - (-3)\\ 12 - 5 & 6 - 0 & 15 - 2\\ 6 - 3 & 0 - (-1) & 9 - 1 \end{pmatrix} \end{pmatrix}$$
$$= \frac{1}{2} \begin{pmatrix} \begin{pmatrix} 8 & -5 & 9\\ 7 & 6 & 13\\ 3 & 1 & 8 \end{pmatrix} \\= \begin{pmatrix} 4 & -\frac{5}{2} & \frac{9}{2}\\ \frac{7}{2} & 0 & \frac{13}{2}\\ \frac{3}{2} & \frac{1}{2} & 4 \end{pmatrix}$$

Properties of Scalar Multiplication of Matrices

Let A and B be matrices of real numbers of the same order, $r, s \in R$ then the following properties hold:

- r(A+B) = rA + rB..... Distributive property
- (r+s)A = rA + sA..... Distributive property
- (rs)A = r(sA) Associative property
- c. Multiplication of Matrices

Let $A = (a_{ij})_{mn}$ and $B = (b_{ij})_{pq}$ be matrices, then the product AB exists If and only if: The number of column of A is equal to number of rows of B. i.e. n = porder of AB is $m \times q$

Examples:

1. identify which pair of matrices are comfortable for multiplication $\begin{pmatrix} 4 & 0 & -8 \\ 4 & 0 & -8 \end{pmatrix}$

a.
$$A = \begin{pmatrix} 4 & 0 & -8 \\ 4 & 8 & 12 \end{pmatrix}$$
 and $B = \begin{pmatrix} 42 & 0 & 2 \\ 0 & 8 & 5 \end{pmatrix}$
b. $A = \begin{pmatrix} 2 & 0 & -8 \\ 3 & 5 & 1 \end{pmatrix}$ and $B = \begin{pmatrix} 2 & 3 \\ 0 & 5 \\ 8 & 1 \end{pmatrix}$
c. $A = (a \ b \ c \ d)$ and $B = \begin{pmatrix} e & i \ m \\ f \ j \ n \\ g \ k \ p \\ h \ l \ q \end{pmatrix}$,
Where $a, b, c, d, e, f, g, h, I, j, k, l, m, n, p, q \in \mathbb{R}$

Solution:

1. a. A = $\begin{pmatrix} 4 & 0 & -8 \\ 4 & 8 & 12 \end{pmatrix}_{23} B = \begin{pmatrix} 42 & 0 & 2 \\ 0 & 8 & 5 \end{pmatrix}_{23}$ A and B are not multiplicative comfortable i.e. *AB doesn't exist*, since the number of columns of A is different from number of rows of B.

b.
$$A = \begin{pmatrix} 2 & 0 & 8 \\ 3 & 5 & 1 \end{pmatrix}_{23}$$
 and $B = \begin{pmatrix} 2 & 3 \\ 0 & 5 \\ 8 & 1 \end{pmatrix}_{33}$

A and B are comfortable .i.e. AB exists, since the number of columns of A is equal to number of rows of B.

c. A =
$$(a \quad b \quad c \quad d)$$
 and B = $\begin{pmatrix} e & i & m \\ f & j & n \\ g & k & p \\ h & l & q \end{pmatrix}$,

Where $a, b, c, d, e, f, g, h, I, j, k, l, m, n, p, q \in \mathbb{R}$

A and B are comfortable i.e. AB exists, since the number of columns of A is equal to the number of rows of B

Multiplication Rules:

Let
$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}_{2 \times 2}$$
 and $B = \begin{pmatrix} w & x & r \\ h & y & s \end{pmatrix}_{2 \times 3}$ be matrices then
 $AB = \begin{pmatrix} R_1C^1 & R_1C^2 & R_1C^3 \\ R_2C^1 & R_2C^2 & R_2C^3 \end{pmatrix}_{2 \times 3} = \begin{pmatrix} (a b) \begin{pmatrix} w \\ h \end{pmatrix} & (a b) \begin{pmatrix} x \\ y \end{pmatrix} & (a b) \begin{pmatrix} r \\ s \end{pmatrix} \end{pmatrix}_{2 \times 3}$
 $= \begin{pmatrix} aw + bh & ax + by & ar + bs \\ cw + dh & cx + cy & cr + ds \end{pmatrix}_{2 \times 3}$
Where, $R_1 = (a b)$ stands for row 1 and $C^1 = \begin{pmatrix} w \\ h \end{pmatrix}$ stands for column 1
, $R_2 = (c d)$ stands for row 2 and $C^2 = \begin{pmatrix} x \\ y \end{pmatrix}$ stands column 2, $C^3 = \begin{pmatrix} r \\ s \end{pmatrix}$ stands column 3

Example

1. Let
$$A = \begin{pmatrix} 2 & 0 & 8 \\ 3 & 5 & 1 \end{pmatrix}_{23}$$
 and $B = \begin{pmatrix} 2 & 3 \\ 0 & 5 \\ 8 & 1 \end{pmatrix}_{32}$ the find
a. AB
2. Let $A = \begin{pmatrix} 1 & 2 & -3 \\ 5 & 0 & 2 \\ 3 & -1 & 1 \end{pmatrix}$ and $B = \begin{pmatrix} 3 & -1 & 2 \\ 4 & 2 & 5 \\ 2 & 0 & 3 \end{pmatrix}$ be matrices determine AB?

_

$$AB = \begin{pmatrix} 2 & 0 & 8 \\ 3 & 5 & 1 \end{pmatrix}_{23} \text{ and } B = \begin{pmatrix} 2 & 3 \\ 0 & 5 \\ 8 & 1 \end{pmatrix}_{32}$$
a. $AB = ?$
Step 1: List out rows of A first, $R_1 = (2 \ 0 \ 8)$ and $R_2 = (3 \ 5 \ 1)$
Step2 : list out columns of B : $C^1 = \begin{pmatrix} 2 \\ 0 \\ 8 \end{pmatrix}$ and $C^2 = \begin{pmatrix} 3 \\ 5 \\ 1 \end{pmatrix}$
Step3 : $AB = \begin{pmatrix} R_1 C^1 & R_1 C^2 \\ R_2 C^1 & R_2 C^2 \end{pmatrix} = \begin{pmatrix} (2 \ 0 \ 8) \begin{pmatrix} 2 \\ 0 \\ 8 \end{pmatrix} & (2 \ 0 \ 8) \begin{pmatrix} 3 \\ 5 \\ 1 \end{pmatrix} \\ (3 \ 5 \ 1) \begin{pmatrix} 2 \\ 0 \\ 8 \end{pmatrix} & (3 \ 5 \ 1) \begin{pmatrix} 3 \\ 5 \\ 1 \end{pmatrix} \end{pmatrix}$
 $= \begin{pmatrix} 2 \times 2 + 0 \times 0 + 8 \times 8 & 2 \times 3 + 0 \times 5 + 8 \times 5 \\ 3 \times 2 + 5 \times 0 + 1 \times 8 & 3 \times 3 + 5 \times 5 + 1 \times 1 \end{pmatrix}$
 $= \begin{pmatrix} 4 + 64 & 6 + 40 \\ 6 + 8 & 9 + 25 + 1 \end{pmatrix}$
 $AB = \begin{pmatrix} 70 & 46 \\ 14 & 35 \end{pmatrix}$

b. BA list out rows of B and columns of A

Rows of B
$$R_1 = (2 \ 3), R_2 = (0 \ 5), and R_3 = (8 \ 1),$$

Columns of A, $C^1 = \binom{2}{3}, C^2 = \binom{0}{5}$ and $C^3 = \binom{8}{1}$

$$BA = \begin{pmatrix} R_1C^1 & R_1C^2 & R_1C^2 \\ R_2C^1 & R_3C^2 & R_3C^2 \end{pmatrix} = \begin{pmatrix} (2 \ 3) \binom{2}{3} & (2 \ 3) \binom{0}{5} & (2 \ 3) \binom{8}{1} \\ (0 \ 5) \binom{2}{3} & (0 \ 5) \binom{0}{5} & (0 \ 5) \binom{8}{1} \\ (8 \ 1) \binom{2}{3} & (8 \ 1) \binom{0}{5} & (8 \ 1) \binom{8}{1} \end{pmatrix}$$

$$= \begin{pmatrix} 2 \times 2 + 3 \times 3 & 2 \times 0 + 3 \times 5 & 2 \times 8 + 3 \times 1 \\ 0 \times 2 + 5 \times 3 & 0 \times 0 + 5 \times 5 & 0 \times 0 + 5 \times 1 \\ 8 \times 2 + 1 \times 3 & 8 \times 0 + 1 \times 5 & 8 \times 8 + 1 \times 1 \end{pmatrix}$$

$$= \begin{pmatrix} 4 + 9 & 0 + 15 & 16 + 3 \\ 2 \times 15 & 0 + 25 & 0 + 5 \\ 16 + 3 & 0 + 5 & 64 + 1 \end{pmatrix}$$

$$BA = \begin{pmatrix} 13 & 15 & 19 \\ 17 & 25 & 56 \end{pmatrix}$$

$$A = \begin{pmatrix} 1 & 2 & -3 \\ 5 & 0 & 2 \\ 3 & -1 & 1 \end{pmatrix} and B = \begin{pmatrix} 3 & -1 & 2 \\ 4 & 2 & 5 \\ 2 & 0 & 3 \end{pmatrix}$$

$$a. AB = \begin{pmatrix} (1 & 2 - 3) \binom{3}{4} & (5 \ 0 \ 2) \binom{-1}{2} & (1 \ 2 - 3) \binom{2}{5} \\ (3 - 1 \ 1) \binom{3}{4} & (3 - 1 \ 1) \binom{-1}{2} & (3 - 1 \ 1) \binom{2}{5} \end{pmatrix}$$

$$= \begin{pmatrix} 3 + 8 - 6 & -1 + 4 + 0 & 2 + 10 - 9 \\ 15 + 0 + 4 & -5 + 0 + 0 & 25 + 0 + 6 \\ 12 - 4 + 2 & -3 - 2 + 0 & 6 - 5 + 3 \end{pmatrix}$$

$$AB = \begin{pmatrix} 5 & 3 & 3 \\ 19 & -5 & 31 \\ 10 & -5 & 4 \end{pmatrix}$$

Properties of Multiplication of Matrices

2.

Let A, B and C be matrices in real numbers and $r \in R$, then

- A(B + C) = AB + AC ... left distributive property
- (A + B)C = AC + BC ... right distributive property
- $A(BC) = (AB)C \dots \dots associative property$
- $r(AB) = (rA)B = A(rB) \dots \dots scalar multiplication$

NB: the product of two non-zero matrices can be a zero matrix Example:

$$1 \text{ let } A = \begin{pmatrix} 2 & 3 \\ 2 & 3 \end{pmatrix} \text{ and } B = \begin{pmatrix} 3 & -3 \\ -2 & 2 \end{pmatrix} \text{ then show that } AB = 0$$

Solution:
$$AB = \begin{pmatrix} (2 & 3) \begin{pmatrix} 3 \\ -2 \end{pmatrix} & (2 & 3) \begin{pmatrix} -3 \\ 2 \end{pmatrix} \\ (2 & 3) \begin{pmatrix} 3 \\ -2 \end{pmatrix} & (2 & 3) \begin{pmatrix} -3 \\ 2 \end{pmatrix} \end{pmatrix} = \begin{pmatrix} 6-6 & -6+6 \\ 6-6 & -6+6 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$$

2.4. Transpose of matrices and its property

Definition: For any matrix A, the matrix obtained from A by interchanging its rows and columns is the transpose of A denoted by A^t

i.e. if A=
$$(a_{ij})_{mn}$$
 the $A^t = (a_{ji})_{nm}$

Example:

1. Find the transpose of the following matrices.

a.
$$A = \begin{pmatrix} 2 & 3 & 5 \\ 8 & 9 & 2 \\ 0 & 4 & 1 \end{pmatrix}$$
 b. $B = \begin{pmatrix} 6 & 4 & 8 & 1 \end{pmatrix}$ c. $C = \begin{pmatrix} 7 \\ 2 \\ 0 \end{pmatrix}$ d. $D = \begin{pmatrix} 9 \end{pmatrix}$
2. Let x and y be real numbers, $A = \begin{pmatrix} 2 & x+1 & 5 \\ 8 & 9 & 2 \\ 0 & 4 & 1 \end{pmatrix}$ and $B = \begin{pmatrix} 2 & 8 & 0 \\ 2x-y & 9 & x+y \\ 0 & 2 & 1 \end{pmatrix}$
Then find the value of x and y when $A^t = B$
3. If $A = \begin{pmatrix} -1 & 2 & 0 \\ -1 & -2 & 1 \\ 3 & 1 & 4 \end{pmatrix}$, then find matrix B such that $B - 2A^t = A$

1. a.
$$A = \begin{pmatrix} 2 & 3 & 5 \\ 8 & 9 & 2 \\ 0 & 4 & 1 \end{pmatrix} \implies A^{t} = \begin{pmatrix} 2 & 8 & 0 \\ 3 & 9 & 4 \\ 5 & 2 & 1 \end{pmatrix}$$
 b. $B = (6 \ 4 \ 8 \ 1) \implies B^{t} = \begin{pmatrix} 6 \\ 4 \\ 8 \\ 1 \end{pmatrix}$

$$c.C = \begin{pmatrix} 7\\2\\0 \end{pmatrix} \Longrightarrow C^{t} = (7 \ 2 \ 0) \qquad d. \quad D = (9) \Longrightarrow D^{t} = (9)$$

2. $A = \begin{pmatrix} 2 & x+1 & 5\\8 & 9 & 2\\0 & 4 & 1 \end{pmatrix} \Longrightarrow A^{t} = \begin{pmatrix} 2 & 8 & 0\\x+1 & 9 & 4\\5 & 2 & 1 \end{pmatrix} \Longrightarrow A^{t} = B$