Lesson 2: Introduction to matrices

Definition

Let A be square matrix with order n. then determinant of A is a scalar value of a function of entries of A. The determinant of A is denoted by:

• det(A) or

- |*A*|
- $|A| \in R$

Example

1. Let
$$A = \begin{pmatrix} a & b & c \\ e & f & g \\ p & q & r \end{pmatrix}_{3 \times 3}$$
 then
a. Determinant of $A = \det(A) = \begin{vmatrix} a & b & c \\ e & f & g \\ p & q & r \end{vmatrix}$

4.2. Determinants of Matrices with Order 2

Definition:
Let
$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$
 be a 2 × 2 matrix. then determinant of A is :
• $det(A) = |A| = ad - bc$

Example

1. let
$$A = \begin{pmatrix} 4 & 5 \\ 7 & 2 \end{pmatrix}$$
, then find a. det(A) b. det(2A)
2. Let $A = \begin{pmatrix} x & 3+x \\ 1 & 2x \end{pmatrix}$ and $|A| = 3$, Then find x
3. Let $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ and det(A) = 4 then find determinant of the following matrices
a. $\begin{pmatrix} a & b \\ 3a+c & 3b+d \end{pmatrix}$ b. $\begin{pmatrix} 5a & 5b \\ 5c & 5d \end{pmatrix}$ c. $\begin{pmatrix} 4a & 4b \\ c & d \end{pmatrix}$ d. $\begin{pmatrix} \frac{d}{4} & -\frac{b}{4} \\ -\frac{c}{4} & \frac{a}{4} \end{pmatrix}$
4. Determine determinant of a matrix $I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$
Solution
1. $A = \begin{pmatrix} 4 & 5 \\ 7 & 2 \end{pmatrix}$ a. $det(A) = \begin{vmatrix} 4 & 5 \\ 7 & 2 \end{vmatrix} = 4 \times 2 - 5 \times 7 = 8 - 35 = -27$
b. $det(2A) = 2\begin{pmatrix} 4 & 5 \\ 7 & 2 \end{pmatrix} = \begin{pmatrix} 2 \times 4 & 2 \times 5 \\ 2 \times 7 & 2 \times 2 \end{pmatrix} = \begin{vmatrix} 8 & 10 \\ 14 & 4 \end{vmatrix} = 8 \times 4 - 10 \times 14 = -108$
2. $A = \begin{pmatrix} x & 3+x \\ 1 & 2x \end{pmatrix}$ and $|A| = 3$
 $det(A) = \begin{vmatrix} x & 3+x \\ 1 & 2x \end{vmatrix}$ and $|A| = 3$
 $\Rightarrow 2x^2 - (3+x) = 3 \Rightarrow 2x^2 - x - 3 = 3$
 $\Rightarrow 2x^2 - x - 6 = 0$
 $\Leftrightarrow 2x^2 - 4x + 3x - 6 = 0$
 $\Leftrightarrow 2x(x-2) + 3(x-2) = 0$

$$\Rightarrow (2x+3)(x-2) = 0 \Rightarrow 2x+3 = 0 \text{ or } x-2 = 0$$

$$\Rightarrow x = -\frac{3}{2} \text{ or } x = 2$$

3. $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \text{ and } \det(A) = 4$
 $\det(A) = 4 \Rightarrow \begin{vmatrix} a & b \\ c & d \end{vmatrix} = 4 \Rightarrow ad - bc = 4$
a. $\begin{pmatrix} a & b \\ 3a+c & 3b+d \end{pmatrix} \Rightarrow \begin{vmatrix} a & b \\ 3a+c & 3b+d \end{vmatrix} = a(3b+d) - b(3a+c)$
 $= 3ab + ad - 3ab - bc$
 $= 3ab - 3ab + ad - bc = ad - bc = 4$
b. $\begin{pmatrix} 5a & 5b \\ 5c & 5d \end{pmatrix} = \begin{vmatrix} 5a & 5b \\ 5c & 5d \end{vmatrix} = 5a \times 5d - 5b \times 5c = 25ad - 25bc$
 $= 25(ad - bc) = 25 \times 4 = 100$
c. $\begin{pmatrix} 4a & 4b \\ c & d \end{pmatrix} = 4ad - 4bc = 4(ad - bc) = 4 \times 4 = 16$
d. $\begin{pmatrix} \frac{d}{4} & -\frac{b}{4} \\ -\frac{c}{4} & \frac{a}{4} \end{pmatrix} = \frac{ad}{16} - \frac{bc}{16} = \frac{1}{16}(ad - bc) = \frac{4}{16} = \frac{1}{4}$
4. $I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = 1.1 - 0.0 = 1 - 0 = 1$

4.3. Minors And Cofactors of Elements of Matrices

Definition:

Let $A = (a_{ij})_{n \times n}$ be a matrix and M be the sub-matrix of A obtained by deleting the $i^{th} - raw$ and j^{th} -Column of A for i; j = 1, 2, 3, ... n. Then:

I. The minor for A at location (i; j), denoted by $M_{ij}(A)$, is the determinant of

the sub matrix A_{ii} .

$$M_{ij}(A) = det(A_{ij}).$$

II. The cofactor, denoted by $\Delta_{ij}(A)$, for A at location (i, j) is the signed determinant of the sub matrix A_{ij} .

$$\Delta_{ij}(A) = (-1)^{i+j} M_{ij}(A).$$

Remark.

• the cofactor $C_{ij}(A)$ at location (i, j) can be computed as $C_{ij}(A) = \begin{cases} \det(A_{ij}), \text{ if } i + j \text{ is even} \\ -\det(A_{ij}), \text{ if } i + j \text{ is odd} \end{cases}$

Example:

1. let A =
$$\begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}$$
, then find all minors and cofactors of A

Solution:

All the minors of A are:

$$\begin{aligned} M_{11} &= deleate \ first \ row \ and \ first \ column \ = \ \begin{vmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{vmatrix} = a_{22}a_{33} - a_{23}a_{32} \\ m_{12} &= deleate \ first \ row \ and \ second \ column \ = \ \begin{vmatrix} a_{21} & a_{23} \\ a_{31} & a_{33} \end{vmatrix} = a_{21}a_{33} - a_{23}a_{33} \\ m_{13} &= deleate \ first \ row \ and \ third \ ccolumn \ = \ \begin{vmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{vmatrix} = a_{21}a_{32} - a_{22}a_{31} \\ m_{21} &= deleate \ second \ row \ and \ first \ column \ = \ \begin{vmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{vmatrix} = a_{21}a_{33} - a_{23}a_{32} \\ m_{22} &= deleate \ second \ row \ and \ first \ column \ = \ \begin{vmatrix} a_{21} & a_{23} \\ a_{31} & a_{33} \end{vmatrix} = a_{21}a_{33} - a_{23}a_{31} \\ m_{22} &= deleate \ second \ row \ and \ second \ column \ = \ \begin{vmatrix} a_{21} & a_{23} \\ a_{31} & a_{32} \end{vmatrix} = a_{21}a_{33} - a_{23}a_{31} \\ m_{23} &= deleate \ second \ row \ and \ third \ column \ = \ \begin{vmatrix} a_{11} & a_{12} \\ a_{31} & a_{32} \end{vmatrix} = a_{11}a_{32} - a_{12}a_{31} \\ m_{31} &= deleate \ third \ row \ and \ first \ column \ = \ \begin{vmatrix} a_{12} & a_{13} \\ a_{22} & a_{23} \end{vmatrix} = a_{12}a_{23} - a_{13}a_{22} \\ m_{32} &= deleate \ third \ row \ and \ second \ column \ = \ \begin{vmatrix} a_{12} & a_{13} \\ a_{22} & a_{23} \end{vmatrix} = a_{11}a_{23} - a_{13}a_{22} \\ m_{32} &= deleate \ third \ row \ and \ second \ column \ = \ \begin{vmatrix} a_{11} & a_{13} \\ a_{21} & a_{22} \end{vmatrix} = a_{11}a_{22} - a_{13}a_{21} \\ m_{33} &= deleate \ third \ row \ and \ third \ column \ = \ \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} = a_{11}a_{22} - a_{12}a_{21} \\ m_{33} &= deleate \ third \ row \ and \ third \ column \ = \ \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} = a_{11}a_{22} - a_{12}a_{21} \\ m_{33} &= deleate \ third \ row \ and \ third \ column \ = \ \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} = a_{11}a_{22} - a_{12}a_{21} \\ m_{33} &= deleate \ third \ row \ and \ third \ column \ = \ \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} = a_{11}a_{22} - a_{12}a_{21} \\ m_{33} &= deleate \ third \ row \ and \ third \ column \ = \ a_{21} a_{22} \end{vmatrix} = a_{21}a_{22} - a_{22}a_{21} \\ m_{33} &= a_{21}a_{22} - a_{22}a_{21} \\ m_{33} &= a_{21}a_{22} - a_{22}a_{21} \\ m_{33} &=$$

and all the cofactors of A are: $C_{ii}(A) = (-1)^{i+j} M_{ii}$

$$C_{11} = (-1)^{1+1} M_{11} = M_{11} = a_{22}a_{33} - a_{23}a_{32}$$

$$C_{12} = (-1)^{1+2} M_{12} = -M_{12} = -a_{21}a_{33} + a_{23}a_{33}$$

$$C_{13} = (-1)^{1+3} M_{13} = M_{13} = a_{21}a_{32} - a_{22}a_{31}$$

$$C_{21} = (-1)^{2+1} M_{21} = -M_{21} = -a_{12}a_{33} + a_{13}a_{32}$$

$$C_{22} = (-1)^{2+2} M_{22} = M_{22} = a_{21}a_{33} - a_{23}a_{31}$$

$$C_{23} = (-1)^{2+3} M_{23} = M_{23} = -a_{11}a_{32} + a_{12}a_{31}$$

$$C_{31} = (-1)^{3+1} M_{31} = M_{31} = a_{12}a_{23} - a_{13}a_{22}$$

$$C_{32} = (-1)^{3+2} M_{32} = M_{32} = -a_{11}a_{23} + a_{13}a_{21}$$

$$C_{33} = (-1)^{3+3} M_{33} = M_{33} = a_{11}a_{22} - a_{12}a_{21}$$

1. Let
$$A = \begin{pmatrix} 1 & 2 & 3 \\ 5 & 2 & 1 \\ 0 & 3 & 2 \end{pmatrix}$$
 the find
a. the minors and cofactors of A
b. *find* $a_{11}\Delta_{11} + a_{12}\Delta_{12} + a_{13}\Delta_{13}$

Minors of A

Solution:

cofactors of A

•
$$M_{11} = \begin{vmatrix} 2 & 1 \\ 3 & 2 \end{vmatrix} = 2 \times 2 - 1 \times 3 = 1$$
, $C_{11} = (-1)^{1+1} M_{11} = 1$

b.
$$A = \begin{pmatrix} 1 & 2 & 3 \\ 5 & 2 & 1 \\ 0 & 3 & 2 \end{pmatrix}, \ \Delta_{11} = 1, \ \Delta_{12} = -10, \ , \Delta_{13} = 15$$

 $a_{11}\Delta_{11} + a_{12}\Delta_{12} + a_{13}\Delta_{13} = 1 \times 1 + 2 \times (-10) + 3 \times 15 = 1 - 2 + 45 = 44$

2. Find minors and cofactors of $A = \begin{pmatrix} 2 & 1 \\ 5 & 3 \end{pmatrix}$ and B = (4)

Solution

a. Minors of A $M_{11} = |3| = 3$ $M_{12} = |5| = 5$ $M_{21} = |1| = 1$ $M_{22} = |2| = 2$ Cofactors of A $\Delta_{11} = M_{11} = 3$ $\Delta_{12} = -M_{11} = -5$ $\Delta_{11} = M_{11} = 1$ $\Delta_{11} = M_{11} = 1$ $\Delta_{11} = M_{11} = 2$

b. B = (4), the matrix has no minor and cofactor.

Note

The sign $(-1)^{i+j}$ on the cofactor of a matrix is a pattern with +'s on the main diagonal.

$$\begin{pmatrix} + & - & + \\ - & + & - \\ + & - & + \end{pmatrix}$$

4.3. Determinant of A square Matrix with Order 3

Definition: Let $A = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}$ be a 3 × 3 matrix then $det(A) = \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix}$ Such that $det(A) = a_{11}C_{11} + a_{12}C_{12} + a_{13}C_{13} \dots \dots$ first row expansion

$$= a_{21}C_{21} + a_{22}C_{22} + a_{23}C_{23} \dots \dots second row expansion$$
$$= a_{31}C_{31} + a_{32}C_{32} + a_{33}C_{33} \dots \dots third row expansion is generally said to be the cofactor expansion along rows.$$

Examples:

1. Find the determinant of the following matrices.

a.
$$A = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 0 \\ 2 & 3 & 5 \end{pmatrix}$$
 b. $B = \begin{pmatrix} 2 & 3 & 0 \\ 1 & 1 & 2 \\ 0 & 2 & 0 \end{pmatrix}$ c. $D = \begin{pmatrix} 1 & 0 & 2 \\ 0 & 1 & 2 \\ 1 & 0 & 0 \end{pmatrix}$ d. $C = \begin{pmatrix} 2 & 1 & 1 \\ 3 & 2 & 0 \\ 2 & 3 & 3 \end{pmatrix}$

Solution:

a.
$$A = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 0 \\ 2 & 3 & 5 \end{pmatrix}$$
$$\Rightarrow \det(A) = \begin{vmatrix} 1 & 2 & 3 \\ 3 & 1 & 0 \\ 2 & 3 & 5 \end{vmatrix} = 1 \times \begin{vmatrix} 1 & 0 \\ 3 & 5 \end{vmatrix} + (-2) \begin{vmatrix} 3 & 0 \\ 2 & 5 \end{vmatrix} + 3 \begin{vmatrix} 3 & 1 \\ 2 & 3 \end{vmatrix}$$
$$= 1(1 \times 5 - 0 \times 3) + (-2)(3 \times 5 - 2 \times 0) + 3(3 \times 3 - 2 \times 1)$$
$$= (5 - 0) + (-2)(15 - 0) + 3(9 - 2)$$
$$= 5 - 30 + 21$$
$$\det(A) = -13$$
b.
$$B = \begin{pmatrix} 2 & 3 & 0 \\ 1 & 1 & 2 \\ 0 & 2 & 0 \end{pmatrix} \Rightarrow \det(B) = 2 \begin{vmatrix} 1 & 2 \\ 2 & 0 \end{vmatrix} + (-3) \begin{vmatrix} 1 & 2 \\ 0 & 0 \end{vmatrix} + 0 \begin{vmatrix} 1 & 1 \\ 0 & 2 \end{vmatrix}$$
$$= 2(1 \times 0 - 2 \times 2) + (-3)(1 \times 0 - 0 \times 2) + 0(1 \times 2 - 0 \times 1)$$
$$= 2(0 - 4) - 3(0) + 0(2 - 0)$$
$$= -8$$
$$\therefore \det(B) = -8$$