
Lesson 2: Properties of Determinants of Matrices  

 
1. let A  (   )   

 be a diagonal or a  triangular matrix then    ( )         product of its diagonal 

elements 

Example:  
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2. Interchanging rows or columns of a square matrix changes only the sign of its determinant. 

i.e. if  
       
→             , then | |   | |  
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3. Adding constant multiple of a row or column of a square matrix A on to an-other row or column of A 

doesn’t change its determinant. 

     i.e.     
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4. Multiplying a row or column of a square matrix A by any constant k  its determinant equals k times 

det(A).  

 i.e.   
       
→            | |   | |   

Example : Compare  determinants of   (
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5. If A is a square matrix of order n and k is a scalar then |  |    | |. 

Example:1. Let   (
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           Solution: k = 4 and order of A = 2 
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6. If a square matrix A has zero rows or columns then its determinant is zero. 

Example: find determinant of A (
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7. If a square matrix A has identical rows or columns then its determinant is zero. 

Example:  find determinant of A  (
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8. Determinant of  a square matrix A and determinant of its  transpose is the same. 

          i.e. | |  |  | 

Example: let   (
   
   
   

) then find determinant of           
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9. Determinant of an identity matrix is always 1. 

i.e.    (  )  |
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10.               be two square matrices of the same order , then    (  )     ( )     ( ) 
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11. For any square matrix A    (  )  (   ( ))           

Example: le A and B are square matrices of order 3 with| |        | |   , then find  

A.     (  )                       B. (   ( ))                C.     (   ) 

Solution:  
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12. Let A bean invertible  square matrix, then     ( )  
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Proof:  let A be an invertible matrix with inverse    , then  
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Example: let A and B be two invertible matrices of order 4 and    ( )       ( )                

    Find   a.     (   )                     b.     (    ) 

Solution  
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1.3. Inverse of a Square Matrix  

i. Ad joint of  a Square Matrix 



Definition:  

Adjoint of a square matrix A  (   ) is defined as the transpose of the matrix   (   )where 

      the cofactor of the element    . 

 Adjoint of A is denoted by Adj(A) (   )
 
 

 

  Example: find  Adj(A) if A (
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Example  

1. Let A (
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Note: For any non-singular square  matrix A   | |  |      ( )|  |   ( )   | 

  Square matrix A is said to be: 

 singular     | |    

 non-singular | |    

 

 

 


